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KDS framework:

e�ciency = # events processed
# observable events

responsiveness = time to handle event

compactness = space usage
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Results
VD (S):

size: Θ(n +m)

#changes: Õ(n3m3)

O(k log2m) time per event

k = #a�ected neighbours

KDS:

O(n +m) size

Õ(n3m3) events

Ω(nm3 + n2m)



Overview
1. Ω(m3) lowerbound Bpq
2. main complications KDS
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Thm. ∃ KDS O(m) size to maintain Bpq
that handles events and updates in
O(logm) time each, and supports
splits in O(log2m) time.
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Future Work
1. Improve Õ(n3m3) bound on #events

Can we get Θ(nm3 + n2m) ?

2. events in O(polylog nm) time?

3. more general movement?
4. holes?


