
Kinetic
Geodesic Voronoi Diagrams
in a
Simple Polygon Matias Korman

André van Renssen
Frank Staals

Marcel Roelo�zen

Motivation
Find shortest path from q to s in P

P

q

s

Motivation
Find shortest path from q to s in P

P

q

s

Motivation
Find shortest path from q to s in P

s may move

P

q

s

Motivation
Find shortest path from q to S in P

sites in S may move

P

q

s

Motivation
Find shortest path from q to S in P

sites in S may move

P

q

s

p

Motivation
Find shortest path from q to S in P

sites in S may move

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

VD(S)

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

VD(S)

p

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

VD(S)

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

v
u

VD(S)

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

v
u

VD(S)

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

v
u

1. When does VD(S) change?

2. How many changes?

VD(S)

3. Can we maintain VD(S) e�ciently?

Motivation
Find shortest path from q to S in P

VD(S): (geodesic) Voronoi diagram

1. When does VD(S) change?

2. How many changes?

Maintain MST(S), NN(S), etc.

3. Can we maintain VD(S) e�ciently?

VD(S): (geodesic) Voronoi diagram

1. When does VD(S) change?

2. How many changes?

Problem

3. Can we maintain VD(S) e�ciently?

VD(S) has size Θ(n +m)

VD(S): (geodesic) Voronoi diagram

1. When does VD(S) change?

2. How many changes?

Problem

3. Can we maintain VD(S) e�ciently?

VD(S) has size Θ(n +m)

w

v

s

VD(S): (geodesic) Voronoi diagram

1. When does VD(S) change?

2. How many changes?

Problem

u
v

3. Can we maintain VD(S) e�ciently?

VD(S): (geodesic) Voronoi diagram

1. When does VD(S) change?

2. How many changes?

3. Can we maintain VD(S) e�ciently?

Problem

u
v

Problem

u
v

KDS framework:

e�ciency = # events processed
observable events

responsiveness = time to handle event

compactness = space usage

p q

size: Θ(m) Bpq

Results
Bisector Bpq:

p q

size: Θ(m) Bpq

Results
Bisector Bpq:

#changes: Θ(m3)

p q

size: Θ(m) Bpq

Results
Bisector Bpq:

#changes: Θ(m3)

O(logm) time per event

KDS:

O(m) size

O(m3) events

p q

size: Θ(m) Bpq

Results
Bisector Bpq:

#changes: Θ(m3)

O(logm) time per event

O(logm) time update

KDS:

O(m) size

O(m3) events

Results
Voronoi center cpqs:

size: Θ(1)

s

p
q

cpqs

Results
Voronoi center cpqs:

size: Θ(1)

s

p
q

cpqs

Results
Voronoi center cpqs:

size: Θ(1)

#changes: Θ(m3)
s

p
q

cpqs

Results
Voronoi center cpqs:

size: Θ(1)

#changes: Θ(m3)

O(log2m) time per event

O(log2m) time update

KDS:

O(m) size

O(m3) events

s

p
q

cpqs

Results
VD (S):

size: Θ(n +m)

#changes: Õ(n3m3)
Ω(nm3 + n2m)

Results
VD (S):

size: Θ(n +m)

#changes: Õ(n3m3)
Ω(nm3 + n2m)

#changes: Õ(n3)
In R2:

Results
VD (S):

size: Θ(n +m)

#changes: Õ(n3m3)

O(k log2m) time per event

k = #a�ected neighbours

KDS:

O(n +m) size

Õ(n3m3) events

Ω(nm3 + n2m)

Overview
1. Ω(m3) lowerbound Bpq
2. main complications KDS

Lowerbound Bpq

Cp

r

vu

Ev

p

Lowerbound Bpq

Cp
vu

r

Ev

p

Lowerbound Bpq

q

Cp

p

Cq

Lowerbound Bpq

q

Cp

p

R

Cq

Lowerbound Bpq

q

Bpq

p

Lowerbound Bpq

q

Bpq

p

Lowerbound Bpq

q

Bpq

u
v

p

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

q

Bpq

uv

p

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

q

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

p

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

q

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

p

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

q

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

p
vu

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

v
qp

w
u

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

v
qp

w
u

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

v
w

p

z u

q

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

v
w

p

z uu

q

Lowerbound Bpq
1. Bpq left to right

=⇒ Ω(m2) events

Bpq

2. Move Bpq left to right Ω(m) times.

=⇒ Ω(m3) events

Dp Dq

v
w

p

z uu

q

KDS Complications

p q

KDS Complications

p q

KDS Complications
1. Combined Events

p q

v

KDS Complications
1. Combined Events

p q

v

KDS Complications
1. Combined Events

p q

v

KDS Complications
1. Combined Events

p q

v

KDS Complications
1. Combined Events

p q

v

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

v

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

v

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

s

v

Bps

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

s
Bqs

v

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

s

v

Bps

KDS Complications
1. Combined Events

p q

2. Implicit Bisector Certi�cates

s
Bqs

vv

KDS Complications
1. Combined Events

2. Implicit Bisector Certi�cates

3. Bisector Splits

v

qs

Bpq

p

Bps

KDS Complications
1. Combined Events

2. Implicit Bisector Certi�cates

3. Bisector Splits

v

q

Bpq

p

s

w

Bps

Bsq

KDS Complications
1. Combined Events

2. Implicit Bisector Certi�cates

3. Bisector Splits

v

q

Bpq

p

s

w

Bps

Bsq

Thm. ∃ KDS O(m) size to maintain Bpq
that handles events and updates in
O(logm) time each, and supports
splits in O(log2m) time.

KDS Complications
1. Combined Events

2. Implicit Bisector Certi�cates

3. Bisector Splits

v

q

Bpq

p

s

w

Bps

Bsq

Thm. ∃ KDS O(n +m) size to maintain
VD(S) that handles events in
O(k(log2m + log n)) time each.

v

q

Bpq

p

s

w

Bps

Bsq

Thm. ∃ KDS O(n +m) size to maintain
VD(S) that handles events in
O(k(log2m + log n)) time each.

Future Work
1. Improve Õ(n3m3) bound on #events

Can we get Θ(nm3 + n2m) ?

p q

Thm. ∃ KDS O(n +m) size to maintain
VD(S) that handles events in
O(k(log2m + log n)) time each.

Future Work
1. Improve Õ(n3m3) bound on #events

Can we get Θ(nm3 + n2m) ?

2. events in O(polylog nm) time?

p

Thm. ∃ KDS O(n +m) size to maintain
VD(S) that handles events in
O(k(log2m + log n)) time each.

Future Work
1. Improve Õ(n3m3) bound on #events

Can we get Θ(nm3 + n2m) ?

2. events in O(polylog nm) time?

3. more general movement?
q

Thm. ∃ KDS O(n +m) size to maintain
VD(S) that handles events in
O(k(log2m + log n)) time each.

Future Work
1. Improve Õ(n3m3) bound on #events

Can we get Θ(nm3 + n2m) ?

2. events in O(polylog nm) time?

3. more general movement?
4. holes?

