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Problem Statement

Select a set of k points S uniformly at
random.

Given: a set P of n points in Rd

What is the expected volume E[V(CH)] of the
convex hull CH of S

Application: Validation when computing Diversity
measures in Ecology
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Results

Exact:

(1± ε)-Approximation (whp.):

O(n2 log n)

Also works for computing E[A(CH)]

O(ε−8/3ρ4n5/3 log7/3 n)

ρ = maxs,t ‖st‖
mins,t ‖st‖

≈ density of P
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Theorem.
We can compute E[A(∆)] in O(n2 log n) time.
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• Do not compute areas A′(−→pq) exactly

• Do not compute the counts npq exactly

Group pairs p, q that have approximately the
same A′(−→pq)

=⇒ use a WSPD: O(ρ
4

ε2 n log n) pairs (p,Q) s.t. for all
p and q ∈ Q we have (1− ε)A′(−→pq) ≤ ApQ ≤ A′(−→pq)

E[A(∆)] ≈ 1(
n
3

) ∑
(p,Q)

ApQ
∑
q∈Q

npq

q

p



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

F (Q) =
z

|Q′|
∑
q∈Q′

npq

Take a random sample Q′ ⊆ Q



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

(1− δ)npq ≤ n′pq ≤ (1 + δ)npq

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

Do not compute the counts npq exactly:



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

(1− δ)npq ≤ n′pq ≤ (1 + δ)npq

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

Do not compute the counts npq exactly:

=⇒ ε-nets/ε-approximations [Haussler & Welzl, 1987]
=⇒ .... =⇒ absolute error E ≤ nz( 1

r + δ) =⇒ E ≤ εz2/4



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

F ∗p (Q) ≥ z(z − 1)/2 ≥ z2/4.

(1− δ)npq ≤ n′pq ≤ (1 + δ)npq

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

Do not compute the counts npq exactly:

=⇒ ε-nets/ε-approximations [Haussler & Welzl, 1987]
=⇒ .... =⇒ absolute error E ≤ nz( 1

r + δ) =⇒ E ≤ εz2/4



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

F ∗p (Q) ≥ z(z − 1)/2 ≥ z2/4.

(1− δ)npq ≤ n′pq ≤ (1 + δ)npq

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

Do not compute the counts npq exactly:

=⇒ ε-nets/ε-approximations [Haussler & Welzl, 1987]
=⇒ .... =⇒ absolute error E ≤ nz( 1

r + δ) =⇒ E ≤ εz2/4

Lemma.
Whp. F (Q) is a (1± ε)-approx. of F ∗(Q).



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

F ∗p (Q) ≥ z(z − 1)/2 ≥ z2/4.

(1− δ)npq ≤ n′pq ≤ (1 + δ)npq

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

Do not compute the counts npq exactly:

=⇒ ε-nets/ε-approximations [Haussler & Welzl, 1987]
=⇒ .... =⇒ absolute error E ≤ nz( 1

r + δ) =⇒ E ≤ εz2/4

Lemma.
Whp. F (Q) is a (1± ε)-approx. of F ∗(Q).

of size ≈ O((nε )2/3)



(1± ε)-Approx.

Q, |Q| = z

pF ∗p (Q) =
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Take a random sample Q′ ⊆ Q

F (Q) =
z

|Q′|
∑
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n′pq

of size ≈ O((nε )2/3)

Lemma.
After O(n log n) expected time preprocessing, we can
whp. compute a (1± ε) approximation of F ∗p (Q), for any

(p,Q) in O((n/ε)2/3 log4/3 n) expected time.
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Q, |Q| = z

pF ∗p (Q) =
∑
q∈Q

npq

Take a random sample Q′ ⊆ Q

F (Q) =
z

|Q′|
∑
q∈Q′

n′pq

of size ≈ O((nε )2/3)

Theorem.
We can compute a value A that whp. is a
(1± ε)-approximation of E[A(∆)] in

O( 1
ε8/3

ρ4n5/3 log7/3 n) expected time.
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Thank you!


