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Application: Validation when computing Diversity
measures in Ecology
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Theorem.
We can compute E[A(A)] in O(n?logn) time.
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e Do not compute areas A’(p() exactly

Group pairs p, g that have approximately the
same A’ (pq)

— use a WSPD: O( inogn) pairs (p, Q) s.t. for all
p and q € Q we have (1—5)A’(?) < Ayo < A(ph)

e Do not compute the counts n,, exactly
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Lemma.
After O(nlogn) expected time preprocessing, we can

whp. compute a (1 & ¢) approximation of F7(Q), for an
(p, Q) in O((n/)?/31og*/3 n) expected time.
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Theorem.

We can compute a value A that whp. is a
(1 £ €)-approximation of E[.A(A)] in
O( =iz p'n®/3log™/® n) expected time.
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