Computing the Expected

Vissarion Fisikopoulos
Frank Staals

Area of an Induced

Constantinos Tsirogiannis madaıco.......

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}

Problem Statement

Given: a set P of n points in \mathbb{R}^{2} Select a set of 3 points $\{p, q, r\}$ uniformly at random.

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}
Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}
Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

$$
\sum_{\{p, q, r\} \subseteq P} \mathcal{A}(\Delta) \mathbb{P}[\text { we selected }\{p, q, r\}]
$$

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}
Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

$$
\sum_{\{p, q, r\} \subseteq P} \mathcal{A}(\Delta) \mathbb{P}[\text { we selected }\{p, q, r\}]
$$

Naive: $O\left(n^{3}\right)$

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}
Select a set of k points S uniformly at random.

Problem Statement

Given: a set P of n points in \mathbb{R}^{2}
Select a set of k points S uniformly at random.

What is the expected area $\mathbb{E}[\mathcal{A}(\mathcal{C H})]$ of the convex hull $\mathcal{C H}$ of S

Problem Statement

Given: a set P of n points in \mathbb{R}^{d}
Select a set of k points S uniformly at random.
What is the expected volume $\mathbb{E}[\mathcal{V}(\mathcal{C H})]$ of the convex hull $\mathcal{C H}$ of S

Problem Statement

Given: a set P of n points in \mathbb{R}^{d}
Select a set of k points S uniformly at random.

What is the expected volume $\mathbb{E}[\mathcal{V}(\mathcal{C H})]$ of the convex hull $\mathcal{C H}$ of S

Application: Validation when computing Diversity measures in Ecology

Results

Given: a set P of n points in \mathbb{R}^{2} Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

Exact: $\quad O\left(n^{2} \log n\right)$
(1 $\pm \varepsilon$)-Approximation (whp.):

Results

Given: a set P of n points in \mathbb{R}^{2} Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

Exact: $\quad O\left(n^{2} \log n\right)$
Also works for computing $\mathbb{E}[\mathcal{A}(\mathcal{C H})]$
($1 \pm \varepsilon$)-Approximation (whp.):

Results

Given: a set P of n points in \mathbb{R}^{2} Select a set of 3 points $\{p, q, r\}$ uniformly at random.
What is the expected area $\mathbb{E}[\mathcal{A}(\Delta)]$ of the triangle Δ defined by p, q, and r ?

Exact: $\quad O\left(n^{2} \log n\right)$
Also works for computing $\mathbb{E}[\mathcal{A}(\mathcal{C H})]$
($1 \pm \varepsilon$)-Approximation (whp.): $O\left(\varepsilon^{-8 / 3} \rho^{4} n^{5 / 3} \log ^{7 / 3} n\right)$

$$
\rho=\frac{\max _{s, t}\|s t\|}{\min _{s, t}\|s t\|} \approx \text { density of } P
$$

Exact Algorithm

Shoelace formula

$\mathcal{A}(Q)=\frac{1}{2} \sum_{i=0}^{n} \mathcal{A}^{\prime}\left(\overrightarrow{v_{i} v_{i+1} \quad \bmod n}\right)$

Exact Algorithm

Shoelace formula
$\mathcal{A}(Q)=\frac{1}{2} \sum_{i=0}^{n} \mathcal{A}^{\prime}\left(\overrightarrow{v_{i} v_{i+1} \quad \bmod n}\right)$
$\mathbb{E}[\mathcal{A}(\Delta)]=\sum_{p, q} \mathcal{A}^{\prime}(\overrightarrow{p q}) \mathbb{P}[\overrightarrow{p q}$ is an edge of $\Delta]$

Exact Algorithm

Shoelace formula
$\mathcal{A}(Q)=\frac{1}{2} \sum_{i=0}^{n} \mathcal{A}^{\prime}\left(\overrightarrow{v_{i} v_{i+1} \quad \bmod n}\right)$
$\mathbb{E}[\mathcal{A}(\Delta)]=\sum_{p, q} \mathcal{A}^{\prime}(\overrightarrow{p q}) \mathbb{P}[\overrightarrow{p q}$ is an edge of $\Delta]$
$\mathbb{P}[\overrightarrow{p q}$ is an edge of $\Delta]=\frac{\binom{n_{q}}{3-2}}{\binom{n}{3}}=\frac{n_{q}}{\binom{n}{3}}$

Exact Algorithm

Shoelace formula
$\mathcal{A}(Q)=\frac{1}{2} \sum_{i=0}^{n} \mathcal{A}^{\prime}\left(\overrightarrow{v_{i} v_{i+1} \quad \bmod n}\right)$
$\mathbb{E}[\mathcal{A}(\Delta)]=\frac{1}{\binom{n}{3}} \sum_{p, q} \mathcal{A}^{\prime}(\overrightarrow{p q}) n_{p q}$
$\mathbb{P}[\overrightarrow{p q}$ is an edge of $\Delta]=\frac{\binom{n_{q}}{3-2}}{\binom{n}{3}}=\frac{n_{q}}{\binom{n}{3}}$

Exact Algorithm

Shoelace formula
$\mathcal{A}(Q)=\frac{1}{2} \sum_{i=0}^{n} \mathcal{A}^{\prime}\left(\overrightarrow{v_{i} v_{i+1} \quad \bmod n}\right)$
$\mathbb{E}[\mathcal{A}(\Delta)]=\frac{1}{\binom{n}{3}} \sum_{p, q} \mathcal{A}^{\prime}(\overrightarrow{p q}) n_{p q}$
$\mathbb{P}[\vec{p} \bar{q}$ is an edge of $\Delta]=\frac{\binom{n_{q}}{3-2}}{\binom{n}{3}}=\frac{n_{q}}{\binom{n}{3}}$
Theorem.
We can compute $\mathbb{E}[\mathcal{A}(\Delta)]$ in $O\left(n^{2} \log n\right)$ time.

- Do not compute areas $\mathcal{A}^{\prime}(\overrightarrow{p q})$ exactly

- Do not compute areas $\mathcal{A}^{\prime}(\overrightarrow{p q})$ exactly
- Do not compute the counts $n_{p q}$ exactly

- Do not compute areas $\mathcal{A}^{\prime}(\overrightarrow{p q})$ exactly

Group pairs p, q that have approximately the same $\mathcal{A}^{\prime}(\overrightarrow{p q})$

- Do not compute the counts $n_{p q}$ exactly

- Do not compute areas $\mathcal{A}^{\prime}(\overrightarrow{p q})$ exactly

Group pairs p, q that have approximately the same $\mathcal{A}^{\prime}(\overrightarrow{p q})$

- Do not compute the counts $n_{p q}$ exactly

- Do not compute areas $\mathcal{A}^{\prime}(\overrightarrow{p q})$ exactly

Group pairs p, q that have approximately the same $\mathcal{A}^{\prime}(\overrightarrow{p q})$
\Longrightarrow use a WSPD: $O\left(\frac{\rho^{4}}{\varepsilon^{2}} n \log n\right)$ pairs (p, Q) s.t. for all p and $q \in Q$ we have $(1-\varepsilon) \mathcal{A}^{\prime}(\overrightarrow{p q}) \leq A_{p Q} \leq \mathcal{A}^{\prime}(\overrightarrow{p q})$

- Do not compute the counts $n_{p q}$ exactly

($1 \pm \varepsilon$)-Approx.

($1 \pm \varepsilon$)-Approx.

$$
F_{p}^{*}(Q)=\sum_{q \in Q} n_{p q}
$$

($1 \pm \varepsilon$)-Approx.

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}
$$

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Do not compute the counts $n_{p q}$ exactly:

$$
(1-\delta) n_{p q} \leq n_{p q}^{\prime} \leq(1+\delta) n_{p q}
$$

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Do not compute the counts $n_{p q}$ exactly:

$$
(1-\delta) n_{p q} \leq n_{p q}^{\prime} \leq(1+\delta) n_{p q}
$$

$\Longrightarrow \varepsilon$-nets/ ε-approximations [Haussler \& Welzl, 1987]
$\Longrightarrow \ldots \Longrightarrow$ absolute error $E \leq n z\left(\frac{1}{r}+\delta\right) \Longrightarrow E \leq \varepsilon z^{2} / 4$

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Do not compute the counts $n_{p q}$ exactly:

$$
(1-\delta) n_{p q} \leq n_{p q}^{\prime} \leq(1+\delta) n_{p q}
$$

$\Longrightarrow \varepsilon$-nets/ ε-approximations [Haussler \& Welzl, 1987]
$\Longrightarrow \ldots \Longrightarrow$ absolute error $E \leq n z\left(\frac{1}{r}+\delta\right) \Longrightarrow E \leq \varepsilon z^{2} / 4$
$F_{p}^{*}(Q) \geq z(z-1) / 2 \geq z^{2} / 4$.

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Do not compute the counts $n_{p q}$ exactly:

$$
(1-\delta) n_{p q} \leq n_{p q}^{\prime} \leq(1+\delta) n_{p q}
$$

$\Longrightarrow \varepsilon$-nets/ ε-approximations [Haussler \& Welzl, 1987]
$\Longrightarrow \ldots \Longrightarrow$ absolute error $E \leq n z\left(\frac{1}{r}+\delta\right) \Longrightarrow E \leq \varepsilon z^{2} / 4$
$F_{p}^{*}(Q) \geq z(z-1) / 2 \geq z^{2} / 4$.

Lemma.

Whp. $F(Q)$ is a $(1 \pm \varepsilon)$-approx. of $F^{*}(Q)$.

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$

$$
\text { of size } \approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)
$$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Do not compute the counts $n_{p q}$ exactly:

$$
(1-\delta) n_{p q} \leq n_{p q}^{\prime} \leq(1+\delta) n_{p q}
$$

$\Longrightarrow \varepsilon$-nets $/ \varepsilon$-approximations [Haussler \& Welzl, 1987]
$\Longrightarrow \ldots$ absolute error $E \leq n z\left(\frac{1}{r}+\delta\right) \Longrightarrow E \leq \varepsilon z^{2} / 4$
$F_{p}^{*}(Q) \geq z(z-1) / 2 \geq z^{2} / 4$.

Lemma.

Whp. $F(Q)$ is a $(1 \pm \varepsilon)$-approx. of $F^{*}(Q)$.

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$ of size $\approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)$
$F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}$

Lemma.

After $O(n \log n)$ expected time preprocessing, we can whp. compute a $(1 \pm \varepsilon)$ approximation of $F_{p}^{*}(Q)$, for any (p, Q) in $O\left((n / \varepsilon)^{2 / 3} \log ^{4 / 3} n\right)$ expected time.

($1 \pm \varepsilon$)-Approx.

Take a random sample $Q^{\prime} \subseteq Q$ of size $\approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)$

$$
F(Q)=\frac{z}{\left|Q^{\prime}\right|} \sum_{q \in Q^{\prime}} n_{p q}^{\prime}
$$

Theorem.

We can compute a value A that whp. is a ($1 \pm \varepsilon$)-approximation of $\mathbb{E}[\mathcal{A}(\Delta)]$ in $O\left(\frac{1}{\varepsilon^{8 / 3}} \rho^{4} n^{5 / 3} \log ^{7 / 3} n\right)$ expected time.

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?

Future Work

- Is there a better partition of the pairs p, q s.t. sets have
Q approximately equal triangle area?

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?
- Can we decrease the required sample size?

$$
\left|Q^{\prime}\right| \approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)
$$

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?
- Can we decrease the required sample size?

$$
\left|Q^{\prime}\right| \approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)
$$

- Can we prove an $\Omega\left(n^{2}\right)$ lower bound for an exact solution?

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?
- Can we decrease the required sample size?

$$
\left|Q^{\prime}\right| \approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)
$$

- Can we prove an $\Omega\left(n^{2}\right)$ lower bound for an exact solution?
- (1 $\pm \varepsilon)$-approximation for convex hulls?
$\mathbb{P}[\overrightarrow{p q}$ is an edge of $\Delta]=\frac{\binom{n_{q}}{3-2}}{\binom{n}{3}}=\frac{n_{q}}{\binom{n}{3}}$

$$
\Longrightarrow \sum n_{p q}
$$

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?
- Can we decrease the required sample size?

$$
\left|Q^{\prime}\right| \approx O\left(\left(\frac{n}{\varepsilon}\right)^{2 / 3}\right)
$$

- Can we prove an $\Omega\left(n^{2}\right)$ lower bound for an exact solution?
- ($1 \pm \varepsilon$)-approximation for convex hulls?
$\mathbb{P}[\overrightarrow{p q}$ is an edge of $\mathcal{C H}]=\frac{\binom{n_{q}}{k-2}}{\binom{n}{3}}=\frac{P_{k-2}\left(n_{q}\right)}{\binom{n}{3}} \Longrightarrow \sum P_{k-2}\left(n_{p q}\right)$

Future Work

- Is there a better partition of the pairs p, q s.t. sets have approximately equal triangle area?
- Can we decrease the required sample size?

Thank you!

- Can we prove an $\Omega\left(n^{2}\right)$ lower bound for an exact solution?
- (1 $\pm \varepsilon)$-approximation for convex hulls?
$\mathbb{P}[\overrightarrow{p q}$ is an edge of $\mathcal{C H}]=\frac{\binom{n_{q}}{k-2}}{\binom{n}{3}}=\frac{P_{k-2}\left(n_{q}\right)}{\binom{n}{3}} \Longrightarrow \sum P_{k-2}\left(n_{p q}\right)$

