

Utrecht University

Unit Distance Graph:

all edges (p, q) have d(p, q) = 1
all non-edges (p, q) have d(p, q) ≠ 1

Clear Unit Distance Graph:

- all edges (p, q) have d(p, q) = 1
- all non-edges (p, q) have $d(p, q) \in [\varepsilon, 1 \varepsilon] \cup [1 + \varepsilon, \infty)$

Connect-the-dots

Connect all pairs p, q with d(p, q) = 1

Which points are at distance 1 from *p*?

 $d(p,q) \in [\varepsilon, 1-\varepsilon] \cup [1] \cup [1+\varepsilon,\infty)$

the points should be the vertices of a clear unit distance graph

Density

#points in region of constant diameter?

(Geometric) Diameter Size of the paper required to draw the graph?

Number of Crossings

Density

Given a (1, ε)-graph.

#points in region of constant diameter?

Upperbound: $O(1/\varepsilon^2)$

Density Given a $(1, \varepsilon)$ -graph. #points in region of constant diameter?

Upperbound: $O(1/\varepsilon^2)$

Witness:

Density

Given a connected $(1, \varepsilon)$ -graph. #points in region of constant diameter?

Upperbound: $O(1/\varepsilon^2)$

Witness:

Diameter

Given a connected $(1, \varepsilon)$ -graph.

What is the (geometric) diameter?

Upperbound: O(n) trivial

Diameter

Given a connected $(1, \varepsilon)$ -graph, with $0 < \varepsilon \le \sqrt{3} - 1$. What is the (geometric) diameter?

Upperbound: O(n) trivial

Witness:

Diameter

Given a connected $(1, \varepsilon)$ -graph. What is the (geometric) diameter?

Upperbound: O(n)trivialLowerbound: $\Omega(\sqrt{n\varepsilon})$ Witness: $\Omega(\sqrt{n\varepsilon})$

p and q u-model C iff

- d(p, q) = 1
- $\|C\| \leq 1 + \delta$
- C inside both unit discs centered at p and q

 p_2

$p_1, ..., p_k$ u-model *C* iff

- p_1 and p_k are the endpoints of C
- p_i and p_{i+1} u-model $C(p_i, p_{i+1})$
- All other p_i , p_j have $d(p_i, p_j) \neq 1$

 p_k

 p_2

$p_1, ..., p_k$ u-model *C* iff

- p_1 and p_k are the endpoints of C
- p_i and p_{i+1} u-model $C(p_i, p_{i+1})$
- All other p_i, p_j have $d(p_i, p_j) \in [\varepsilon, 1 - \varepsilon] \cup [1 + \varepsilon, \infty)$

 p_k

 p_1

 $p_1, ..., p_k$ u-model *C* we allow one piece to be not u-modelled.

 p_k

*p*₂

 p_2

P u-models $C_1, ..., C_h$ iff

 p_1

• All C_i 's are u-modelled by $P' \subseteq P$

 p_k

• All other p and q have $d(p,q) \in [\varepsilon, 1-\varepsilon] \cup [1+\varepsilon,\infty)$

Algorithm Pre-drawn piece at the end

Algorithm Pre-drawn piece at the end Q_i Each curve C_i 2 choices P_i or Q_i $x_i = \text{TRUE}$ and $x_i = \text{FALSE}$ Build a 2-SAT formula: if $Q_i \cup P_i$ not a $(1, \varepsilon)$ -point set then add $x_i \vee \overline{x_i}$

Algorithm Pre-drawn piece at the end Pi Running time:

 Q_i

 $O(n/\varepsilon^2 \log n)$

Algorithm Pre-drawn piece at the end

Interior piece:

 $O(n/\varepsilon^2 \log n)$

Similar approach

 Q_i

Algorithm Pre-drawn piece at the end

Running time:

 $O(n/\varepsilon^2 \log n)$

Interior piece: Minimize piece length: > 1 piece per curve:

Similar approach NP hard NP hard

 Q_i

