

Puzzles

Clear Unit Distance Graph:

- all edges (p, q) have $d(p, q)=1$
- all non-edges (p, q) have $d(p, q) \in[\varepsilon, 1-\varepsilon] \cup[1+\varepsilon, \infty)$

Connect-the-dots

Unite-the-dots

Connect all pairs p, q with $d(p, q)=1$

Unite-the-dots

Which points are at distance 1 from p ?
\bullet -

Unite-the-dots

Which points are at distance 1 from p ?

${ }^{\bullet} u$

It should be clear which pairs to connect for all pairs p, q, we require

$$
d(p, q) \in[\varepsilon, 1-\varepsilon] \cup[1] \cup[1+\varepsilon, \infty)
$$

Unite-the-dots

Which points are at distance 1 from p ?

${ }^{\bullet} u$

It should be clear which pairs to connect the points should be the vertices of a clear unit distance graph

Properties of Clear UD Graphs

Density

\#points in region of constant diameter?

(Geometric) Diameter
Size of the paper required to draw the graph?
Number of Crossings

Properties of Clear UD Graphs

Density

Given a $(1, \varepsilon)$-graph. \#points in region of constant diameter?

Upperbound: $O\left(1 / \varepsilon^{2}\right)$

Properties of Clear UD Graphs

Density

Given a $(1, \varepsilon)$-graph. \#points in region of constant diameter?

Upperbound: $O\left(1 / \varepsilon^{2}\right)$

Witness:
$\Omega\left(1 / \varepsilon^{2}\right)$

Properties of Clear UD Graphs

Density

Given a connected $(1, \varepsilon)$-graph. \#points in region of constant diameter?

Upperbound: $O\left(1 / \varepsilon^{2}\right)$

Witness:
$\Omega\left(1 / \varepsilon^{2}\right)$

Properties of Clear UD Graphs

Density

Given a $(1, \varepsilon)$-path.
\#points in region of constant diameter?
Upperbound: $O\left(1 / \varepsilon^{2}\right)$

Witness:
$\Omega(1 / \sqrt{\varepsilon})$

Properties of Clear UD Graphs

Diameter

Given a connected ($1, \varepsilon$)-graph.
What is the (geometric) diameter?
Upperbound: $O(n)$ trivial

Properties of Clear UD Graphs

Diameter

Given a connected $(1, \varepsilon)$-graph, with $0<\varepsilon \leq \sqrt{3}-1$. What is the (geometric) diameter?

Upperbound: $O(n)$ trivial

Witness:

$$
\Omega(n)
$$

Properties of Clear UD Graphs

Diameter

Given a connected ($1, \varepsilon$)-graph.
What is the (geometric) diameter?
Upperbound: $O(n)$ trivial
Lowerbound: $\Omega(\sqrt{n} \varepsilon)$
Witness: $\quad \Omega(\sqrt{n} \varepsilon)$

Properties of Clear UD Graphs

Unite-the-dots

Unite-the-dots

Input:

Output:

Unite-the-dots

p and q-model C iff

- $d(p, q)=1$
- $\|C\| \leq 1+\delta$
- C inside both unit discs centered at p and q

Unite-the-dots

$p_{1}, . ., p_{k}$ u-model C iff

- p_{1} and p_{k} are the endpoints of C
- p_{i} and p_{i+1} u-model $C\left(p_{i}, p_{i+1}\right)$
- All other p_{i}, p_{j} have $d\left(p_{i}, p_{j}\right) \neq 1$

Unite-the-dots

p_{1}, \ldots, p_{k} u-model C iff

- p_{1} and p_{k} are the endpoints of C
- p_{i} and p_{i+1} u-model $C\left(p_{i}, p_{i+1}\right)$
- All other p_{i}, p_{j} have

$$
d\left(p_{i}, p_{j}\right) \in[\varepsilon, 1-\varepsilon] \cup[1+\varepsilon, \infty)
$$

Unite-the-dots

Unite-the-dots

Algorithm

Pre-drawn piece at the end

Algorithm

Algorithm

Pre-drawn piece at the end

Each curve $C_{i} 2$ choices P_{i} or Q_{i} ॥
$x_{i}=$ True and $x_{i}=$ FALSE
Build a 2-SAT formula:
if $Q_{i} \cup P_{j}$ not a $(1, \varepsilon)$-point set then add $x_{i} \vee \overline{x_{j}}$

Algorithm

Pre-drawn piece at the end

Running time:
$O\left(n^{2}\right)$

Algorithm

Pre-drawn piece at the end

Running time:

Algorithm

Pre-drawn piece at the end

Running time:

$O\left(n / \varepsilon^{2} \log n\right)$

Depends on density bound for ($1, \varepsilon$)-paths

Future Work: Improve to ...?

Algorithm

Pre-drawn piece at the end

Running time:
Interior piece:

$O\left(n / \varepsilon^{2} \log n\right)$
Similar approach

Algorithm

Pre-drawn piece at the end

Running time:
Interior piece:
Minimize piece length:
>1 piece per curve:

Similar approach
NP hard
NP hard

Thank you!

