A splitting line model for directional relations

Kevin Buchin ${ }^{1}$ Vincent Kusters ${ }^{2}$ Bettina Speckmann ${ }^{1}$ Frank Staals ${ }^{3}$ Bogdan Vasilescu ${ }^{1}$
${ }^{1}$ Eindhoven University of Technology
${ }^{2}$ ETH Zürich ${ }^{3}$ Utrecht University

November 3, 2011

Problem: direction between regions

Where is target polygon B with respect to reference polygon A ?

Problem: direction between regions

Centroids: B is northeast of A.

Problem: direction between regions

Problem: direction between regions

Problem: direction between regions

Directional relations are subjective

\square
North or northwest?

Directional relations are subjective

North or northwest?

North, northeast, or east?

Directional relations are subjective

North or northwest?

North, northeast, or east?

????

Criteria for directional relations

Criteria for directional relations

Alignment

Criteria for directional relations

Alignment

Removal direction

Criteria for directional relations

Alignment

Removal direction

Criteria for directional relations

Removal direction

Affine transformation

A splitting line for directional relations

A splitting line for directional relations

Our Approach: Compute the best splitting line that separates A and B.

A splitting line for directional relations

Our Approach: Compute the best splitting line that separates A and B.

Question: What does it mean to be the best splitting line?

Measuring the quality of a splitting line

(1) Divide the scene in slabs
(2) Compute the quality of each slab.

Measuring the quality of a splitting line

(1) Divide the scene in slabs
(2) Compute the quality of each slab.

$$
M_{\text {line }}(y)=\int_{-\infty}^{\infty} M(x, y) d x
$$

The slab measure M

User definable parameters.

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

Measures the amount of A on the A-side.

$$
\operatorname{Good} A=\sum_{a \in \text { TopA }} \frac{\operatorname{height}(a)}{\operatorname{area}(A)}
$$

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

Measures the amount of A on the A-side.

$$
\operatorname{Good} A=\sum_{a \in \text { TopA }} \frac{\operatorname{height}(a)}{\operatorname{area}(A)}
$$

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

Measures the amount of B on the B-side.

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Alignment

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Removal direction.

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Removal direction.

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

criterion: Area

Weighing functions:

The slab measure M

$$
\begin{aligned}
M= & \rho_{1} \cdot f(B) \cdot \operatorname{Good} A+ \\
& \rho_{1} \cdot g(A) \cdot \operatorname{Good} B- \\
& \rho_{2} \cdot h(B) \cdot \text { Alignment } A- \\
& \rho_{3} \cdot \text { Obstruct } A-\rho_{3} \cdot \text { Obstruct } B
\end{aligned}
$$

How about Robustness and Affine transformation?

ObstructB

$$
\text { Obstruct } B=\sum_{b \in \text { Top }}\left(\frac{\operatorname{height}(b)}{\operatorname{area}(B)} \cdot \frac{\sum_{a \in\{s \mid s \in \text { TopA } \wedge b>s\}} h e i g h t(a)}{\sum_{a \in \text { TopA }} \operatorname{height}(a)}\right)
$$

ObstructB

$$
\text { ObstructB }=\sum_{b \in \operatorname{Top} B}\left(\frac{\operatorname{height}(b)}{\operatorname{area}(B)} \cdot \frac{\sum_{a \in\{s \mid s \in \text { TopA } \wedge b>s\}} \operatorname{height}(a)}{\sum_{a \in \text { TopA }} \operatorname{height}(a)}\right)
$$

AlignmentA

AlignmentA

An algorithm for $M_{\text {line }}$

Observation: $M_{\text {line }}(y)$ maximal if $\frac{d}{d y} M_{\text {line }}(y)=0$.
Algorithm
Sweep ℓ downwards and compute a description of $M_{\text {line }}$ and its derivative.

Computing GoodA

$\int \operatorname{Good} A(y, x) d x$ is a piecewise quadratic function in y :

Computing GoodA

$\int \operatorname{Good} A(y, x) d x$ is a piecewise quadratic function in y :

Maintain set P of trapezoids intersected by ℓ.
P changes at most n times $\Longrightarrow O(n \log n)$ to compute $\operatorname{Good} A$.

Computing ObstructB

$\int \operatorname{Obstruct} B(y, x) d x$ is the sum of rational functions in y :

Maintain $h_{B}(x)$: the amount of B above the sweep line.

Computing ObstructB

$\int \operatorname{Obstruct} B(y, x) d x$ is the sum of rational functions in y :

Maintain $h_{B}(x)$: the amount of B above the sweep line. $O\left(n^{2}\right)$ events $\Longrightarrow O\left(n^{2} \log n\right)$ to compute Obstruct B.

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

- Use the 8 compass directions N,NE,E,..,NW

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

- Use the 8 compass directions N,NE,E,..,NW
- Use $k>8$ directions (for example $k=360$)

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

- Use the 8 compass directions N,NE,E,..,NW
- Use $k>8$ directions (for example $k=360$)

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

- Use the 8 compass directions N,NE,E,..,NW
- Use $k>8$ directions (for example $k=360$)

An algorithm for directional relations

Compute the optimal splitting line for each direction and pick the best one.

Question: Which directions should we use?

- Use the 8 compass directions N,NE,E,..,NW
- Use $k>8$ directions (for example $k=360$)

Optimal splitting lines using 360 directions

Splitting lines for directional relations

Splitting lines for directional relations

SplittingLine	NW	NW	S	N	SE
Centroids	NW	W	SW	NE	SE
Matrix	N	NW	S	N	-

SplittingLine	NW	S	N	NW	W
Centroids	NW	SE	NW	W	W
Matrix	N	SE	-	W	NW

Future Work

- 8 directions vs many directions

Future Work

- 8 directions vs many directions

- Non-linear separator (e.g. curve or polyline)

Future Work

- 8 directions vs many directions

- Non-linear separator (e.g. curve or polyline)

- Are directional relations (a)symmetric?

Future Work

- 8 directions vs many directions

- Non-linear separator (e.g. curve or polyline)

- Are directional relations
(a)symmetric?

Thank you! Questions?

