On the complexity of

minimum-link path problems

Minimum-link path problems

Given a domain D, and two points $s, t \in D$ find a minimum-link path P between s and t,

s.t. the bends of P lie in $\left.D\right|^{a}$,

and the links of P lie in $\left.D\right|^{b}$

Minimum-link path problems

a	b	1	2 (faces)
1 (edges)			3 (anywhere)
0 (vertices)			
2 (faces)			
3 (anywhere)			

Minimum-link path problems

a	b	1	2 (faces)
0 (vertices)			3 (anywhere)
1 (edges)			
2 (faces)			
3 (anywhere)			

Minimum-link path problems

a	b	1	2 (faces)	3 (anywhere)
0 (vertices)	$O(n)$	$O^{*}\left(n^{2}\right)$	$O^{*}\left(n^{2}\right)$	
1 (edges)				
2 (faces)				

Minimum-link path problems

a	b	1	2 (faces)
1 (edges)			3 (anywhere)
0 (vertices)	$O(n)$		$O^{*}\left(n^{2}\right)$
2 (faces)			
3 (anywhere)			

Minimum-link path problems

a	1	2 (faces)	3 (anywhere)
0 (vertices)	$O(n)$	$O^{*}\left(n^{2}\right)$	$O^{*}\left(n^{2}\right)$
1 (edges)			
2 (faces)			
3 (anywhere)			$O(1)$

Minimum-link path problems

	1	2 (faces)	3 (anywhere)
0 (verices)	${ }^{O(n)}$	$O^{*}\left(n^{2}\right)$	$0^{*}\left(n^{2}\right)$
1 (edges)		$\begin{gathered} O\left(n^{9}\right) \\ {[\text { Aronov et al., 2006] }} \end{gathered}$	
2 (faces)			
3 (anywhere)			1

Minimum-link path problems

	1	2 (faces)	3 (anywhere)
0 (vertices)	${ }^{O(n)}$	$O^{*}\left(n^{2}\right)$	$0^{*}\left(n^{2}\right)$
1 (edges)			
2 (faces)		(Sy)	Open
3 (anywhere)			

Minimum-link path problems

Minimum-link path problems

$a \quad b$	1	2 (faces)	3 (anywhere)	
0 (vertices)	$O(n)$	$O^{*}\left(n^{2}\right)$		$O^{*}\left(n^{2}\right)$
1 (edges)		$O\left(n^{9}\right)$ [Aronov et al., 2006] 5Δ NP-hard		NP-hard
2 (faces)				NP-hard
3 (anywhere)				$O(1)$ NP-hard

Minimum-link path problems

	1	2 (faces)	3 (anywhere)
0 (vertices)	O(n)	$O^{*}\left(n^{2}\right)$	$O^{*}\left(n^{2}\right)$
1 (edges)			
2 (faces)			No.hard
3 (anywhere)			

Minimum-link path problems

(bla

Minimum-link path problems

	${ }^{6} 1$	2 (faces)	3 (anywhere)
0 (vertices)	$O(n)$	$O^{*}\left(n^{2}\right)$	$0^{*}\left(n^{2}\right)$
1 (edges)			(1)
2 (faces)			
3 (anywhere)			

Algebraic complexity in \mathbb{R}^{2}

Algebraic complexity in \mathbb{R}^{2}

Lemma. [Kahan \& Snoeyink, 1999]
There is a simple polygon with vertices of bit-complexity $\log n$ s.t. the boundary of the region reachable from s in k steps has vertices with bit-complexity $\Omega(k \log n)$.

Algebraic complexity in \mathbb{R}^{2}

Lemma.

A MinLinkPath ${ }_{a b}$ of length k between s and t in a simple polygon whose vertices, as well as s and t, have bit-complexity $\log n$, may contain vertices of bit-complexity $\Omega(k \log n)$.

Algebraic complexity in \mathbb{R}^{2}

Lemma.

A MinLinkPath ${ }_{a b}$ of length k between s and t in a simple polygon whose vertices, as well as s and t, have bit-complexity $\log n$, may contain vertices of bit-complexity $\Omega(k \log n)$.

Lemma.

The k-reachable space has vertices with bit complexity $O(k \log n)$.

Algebraic complexity in \mathbb{R}^{3}

Lemma.

The boundary of the k-reachable space can be represented by curves of order $2 k+1$ (and order 2 when $k=1$).

Algebraic complexity in \mathbb{R}^{3}

Lemma.

The boundary of the k-reachable space can be represented by curves of order $2 k+1$ (and order 2 when $k=1$).

Lemma.

The k-reachable space has vertices with bit complexity $O\left(9^{k}\right)$.

Minimum-link path problems

	1	2 (faces)	3 (anywhere)
0 (vertices)	O(n)	$0^{*}\left(n^{2}\right)$	$0^{*}\left(n^{2}\right)$
1 (edges)			
2 (faces)		(Sy	
3 (anywhere)			

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?

$$
\begin{aligned}
& \ell_{0} \\
& \ell_{1} \\
& \ell_{2}^{\prime} \\
& \ell_{2} \\
& \ell_{i}^{\prime} \\
& \ell_{i} \\
& \hline
\end{aligned}
$$

$$
\ell_{n}-
$$

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
Min link path* with bends on lines, from s to t with $2 n-1$ links
$\Longleftrightarrow \quad \exists$ subset S that sums to W

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links
$\Longleftrightarrow \quad p$ corrresponds to the sum
of a subset of $a_{1}, . ., a_{i}$

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links $\Longleftrightarrow p$ corrresponds to the sum

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links
$\Longleftrightarrow \quad p$ corrresponds to the sum
of a subset of $a_{1}, . ., a_{i}$

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links $\Longleftrightarrow p$ corrresponds to the sum

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links $\Longleftrightarrow p$ corrresponds to the sum

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ?
p on ℓ_{i} reachable with $2 i-1$ links $\Longleftrightarrow p$ corrresponds to the sum

Blueprint for the Reduction

2-Partition: n integers $a_{1}, . ., a_{n}$ with $\sum a_{i}=2 W$. Is there a subset S that sums to W ? Min link path* with bends on lines, from s to t with $2 n-1$ links
$\Longleftrightarrow \quad \exists$ subset S that sums to W

MinLinkPath in \mathbb{R}^{3}

Theorem. MinLinkPath 12 on a terrain is NP-hard

MinLinkPath in \mathbb{R}^{3}

Theorem. MinLinkPath ${ }_{a 2}$ on a terrain is NP-hard.

MinLinkPath in \mathbb{R}^{3}

Theorem. MinLinkPath ${ }_{a 3}$ on a terrain is NP-hard.

MinLinkPath in \mathbb{R}^{2}

Theorem. MinLinkPath ${ }_{a 2}$ in a polygon with holes is NP-hard.

Future Work

- Is Minimum link path strongly NP-hard?
or, can design a pseudo polynomial time algorithm?

Future Work

- Is Minimum link path strongly NP-hard?
or, can design a pseudo polynomial time algorithm?
- Is there a polynomial upper bound on the bit-complexity in \mathbb{R}^{3} ?
- lower bound on the bit-complexity in \mathbb{R}^{3} ?

Future Work

- Is Minimum link path strongly NP-hard?
or, can design a pseudo polynomial time algorithm?
- Is there a polynomial upper bound on the bit-complexity in \mathbb{R}^{3} ?
- lower bound on the bit-complexity in \mathbb{R}^{3} ?
Thank you!

