Practical Approaches to Partially

 Guarding a Polyhedral Terrainwi
Universität Augsburg University
Frank Kammer
Maarten Löffler
Paul Mutser
Frank Staals

- g_{1}

Practical Approaches to Partially Guarding a Polyhedral Terrain

Practical Approaches to Partially Guarding a Polyhedral Terrain

Practical Approaches to Partially

 Guarding a Polyhedral TerrainFind a set of guards \mathcal{G} that can together completely see \mathcal{T}

Practical Approaches to Partially

 Guarding a Polyhedral TerrainFind a smallest set of guards \mathcal{G} that can together completely see \mathcal{T}

Practical Approaches to Partially

 Guarding a Polyhedral TerrainFind a smallest set of guards \mathcal{G} that can together completely see \mathcal{T}

Select \mathcal{G} from a set of potential guards \mathcal{P}.
Guards are placed at height h above the terrain.

Practical Approaches to Partially

 Guarding a Polyhedral TerrainFind a smallest set of guards \mathcal{G} that can together completely see \mathcal{T}

Select \mathcal{G} from a set of potential guards \mathcal{P}.
Guards are placed at height h above the terrain.
The part of \mathcal{T} visible from a point (guard) $g=$ The viewshed $\mathcal{V}(g)$ of g

Practical Approaches to Partially

 Guarding a Polyhedral TerrainFind a smallest set of guards \mathcal{G} that can together completely see \mathcal{T}
i.e. such that: $\mathcal{T}=\mathcal{V}(\mathcal{G})$

$$
\mathcal{V}(\mathcal{G})=\bigcup_{g \in \mathcal{G}} \mathcal{V}(g)
$$

Select \mathcal{G} from a set of potential guards \mathcal{P}.
Guards are placed at height h above the terrain.
The part of \mathcal{T} visible from a point (guard) $g=$ The viewshed $\mathcal{V}(g)$ of g

Practical Approaches to Partially

 Guarding a Polyhedral Terrain- \mathcal{T} is often imprecise.
- Vegetation, weather, etc influence visibility. So, it may be sufficient to see a large part of \mathcal{T}.

Practical Approaches to Partially

 Guarding a Polyhedral Terrain- \mathcal{T} is often imprecise.
- Vegetation, weather, etc influence visibility.

So, it may be sufficient to see a large part of \mathcal{T}.
Find a smallest set of guards \mathcal{G} such that

$$
\llbracket \mathcal{V}(\mathcal{G}) \rrbracket \geq(1-\varepsilon) \llbracket \mathcal{T} \rrbracket, \quad \text { for a given } \varepsilon
$$

$\llbracket \mathcal{T}^{\prime} \rrbracket=$ the size of \mathcal{T}^{\prime}

- g_{1}

Practical Approaches to Partially

 Guarding a Polyhedral Terrain- \mathcal{T} is often imprecise.
- Vegetation, weather, etc influence visibility.
- Terrain Guarding is NP-hard [Cole \& Sharir, J. Sym. Comp '89]

Practical Approaches to Partially

 Guarding a Polyhedral Terrain- \mathcal{T} is often imprecise.
- Vegetation, weather, etc influence visibility.
- Terrain Guarding is NP-hard [Cole \& Sharir, J. Sym. Comp '89]
- NP-Hard to approximate \#guards within a factor $O(\log n)$
[Eidenbenz et al., Algoritmica '00]

Results

Experiments on real terrains showing:

NP-Hard to approximate the amount of terrain covered within a factor $O(\log n)$

Quality guarantees for a simple greedy algorithm

Observations to reduce the number of potential guards in \mathcal{P}
the \#guards used for an $(1-\varepsilon)$-cover
the reduction of the \#potential guards

A simple Greedy Algorithm

Algorithm $\operatorname{GreedyGuard}(\mathcal{T}, \varepsilon, \mathcal{P})$

1. Compute the viewsheds for all guards in \mathcal{P}.
2. Let $\mathcal{G}=\emptyset$ and $\mathcal{R}=\mathcal{P}$.
3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket<(1-\varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
4. Select a guard $g \in \mathcal{R}$ that maximizes the size $\llbracket \mathcal{V}(g) \backslash \mathcal{V}(\mathcal{G}) \rrbracket$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
5. Remove g from \mathcal{R} and add it to \mathcal{G}.
6. return \mathcal{G}

A simple Greedy Algorithm

Algorithm $\operatorname{GreedyGuard}(\mathcal{T}, \varepsilon, \mathcal{P})$

1. Compute the viewsheds for all guards in \mathcal{P}.
2. Let $\mathcal{G}=\emptyset$ and $\mathcal{R}=\mathcal{P}$.
3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket<(1-\varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
4. Select a guard $g \in \mathcal{R}$ that maximizes the size $\llbracket \mathcal{V}(g) \backslash \mathcal{V}(\mathcal{G}) \rrbracket$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
5. Remove g from \mathcal{R} and add it to \mathcal{G}.
6. return \mathcal{G}

Lemma 1. GreedyGuard computes an ε-cover of $\mathcal{T}^{\prime}=\mathcal{V}(\mathcal{P})$ of at most $O(k / \varepsilon)$ guards, where k is the size of an optimal 0 -cover of \mathcal{T}^{\prime}.

A simple Greedy Algorithm

Algorithm GreedyGuard $(\mathcal{T}, \varepsilon, \mathcal{P})$

1. Compute the viewsheds for all guards in \mathcal{P}.
2. Let $\mathcal{G}=\emptyset$ and $\mathcal{R}=\mathcal{P}$.
3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket<(1-\varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
4. Select a guard $g \in \mathcal{R}$ that maximizes the size $\llbracket \mathcal{V}(g) \backslash \mathcal{V}(\mathcal{G}) \rrbracket$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
5. Remove g from \mathcal{R} and add it to \mathcal{G}.
6. return \mathcal{G}

Lemma 1. GREEDYGUARD computes an ε-cover of $\mathcal{T}^{\prime}=\mathcal{V}(\mathcal{P})$ of at most $O(k / \varepsilon)$ guards, where k is the size of an optimal 0 -cover of \mathcal{T}^{\prime}.
"If OPT can cover \mathcal{T}^{\prime} with k guards, we can cover a $(1-\varepsilon)$ fraction of \mathcal{T}^{\prime} with $c k / \varepsilon$ guards."

A simple Greedy Algorithm

"If OPT can cover \mathcal{T}^{\prime} with k guards, we can cover a $(1-\varepsilon)$ fraction of \mathcal{T}^{\prime} with $c k / \varepsilon$ guards."

A simple Greedy Algorithm

OPT
1
k

OPT
$1-\varepsilon$
ℓ

GreedyGuard
$1-\varepsilon$
ck/ ε
"If OPT can cover \mathcal{T}^{\prime} with k guards, we can cover a $(1-\varepsilon)$ fraction of \mathcal{T}^{\prime} with $c k / \varepsilon$ guards."

A simple Greedy Algorithm

OPT
1
k

OPT
$1-\varepsilon$
ℓ

GreedyGuard
$1-\varepsilon$
ck/ ε
"If OPT can cover \mathcal{T}^{\prime} with k guards, we can cover a $(1-\varepsilon)$ fraction of \mathcal{T}^{\prime} with $c k / \varepsilon$ guards."

A simple Greedy Algorithm

OPT
1
k

OPT
$1-\varepsilon$
ℓ

GreedyGuard
$1-\varepsilon$
ck/ ε
"If OPT can cover \mathcal{T}^{\prime} with k guards, we can cover a $(1-\varepsilon)$ fraction of \mathcal{T}^{\prime} with $c k / \varepsilon$ guards."

A simple Greedy Algorithm


```
#vertices in \mathcal{T}
    coarse }\approx170
    fine }\approx1600
covered area }\approx11.5\textrm{km}\times14\textrm{km
\mathcal { P } = \text { the set of vertices of } \mathcal { T }
|\mathcal{V}(g)\rrbracket= #terrain vertices in }\mathcal{V}(g
h=15 meter
```


A simple Greedy Algorithm

Hot Springs
Quinn Pk
Sphinx Lakes Split Mountain
Wren Peak
coarse

A simple Greedy Algorithm

Hot Springs
Quinn Pk
Sphinx Lakes Split Mountain
Wren Peak
coarse

fine

A simple Greedy Algorithm

Wren Peak
coarse fine

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=1$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=2$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=3$

A simple Greedy Algorithm

Computing a 0.05 -cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=4$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=5$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=6$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=7$

A simple Greedy Algorithm

Computing a $0.05-$ cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=8$

A simple Greedy Algorithm

Computing a $0.05-$ cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=9$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=10$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=10$

A simple Greedy Algorithm

Computing a 0.05-cover on a coarse Wren Peak using GreedyGuard
$|\mathcal{G}|=10$
We need another 15 guards to view all remaining vertices!

Dominating Guards

dominates $h \equiv \mathcal{V}(h) \subseteq \mathcal{V}(g)$

Dominating Guards

 g strictly dominates $h \equiv \mathcal{V}(h) \subset \mathcal{V}(g)$

Dominating Guards

g strictly dominates $h \equiv \mathcal{V}(h) \subset \mathcal{V}(g)$
Let $\mathcal{H}=\left\{p_{1}, . ., p_{k}, h\right\}$ be an ε-cover.

Dominating Guards

g strictly dominates $h \equiv \mathcal{V}(h) \subset \mathcal{V}(g)$
Let $\mathcal{H}=\left\{p_{1}, . ., p_{k}, h\right\}$ be an ε-cover.
$\Longrightarrow \mathcal{G}=\left\{p_{1}, . ., p_{k}, g\right\}$ is an ε-cover.

Dominating Guards

g strictly dominates $h \equiv \mathcal{V}(h) \subset \mathcal{V}(g)$

$$
\begin{aligned}
& \text { Let } \mathcal{H}=\left\{p_{1}, . ., p_{k}, h\right\} \text { be an } \varepsilon \text {-cover. } \\
& \quad \Longrightarrow \mathcal{G}=\left\{p_{1}, . ., p_{k}, g\right\} \text { is an } \varepsilon \text {-cover. }
\end{aligned}
$$

Observation 2. Let \mathcal{P} be a set of potential guards. There is an optimal (minimum size) ε-cover \mathcal{G} of $\mathcal{V}(\mathcal{P})$ such that no guard in \mathcal{G} is strictly dominated by any guard in \mathcal{P}.

Dominating Guards

Hot Springs
Quinn Pk
Sphinx Lakes Split Mountain
Wren Peak

Dominating Guards

Wren Peak

Dominating Guards

 Wren Peak

Dominating Guards

 Wren Peak

Dominating Guards

 g dominates $h \equiv \mathcal{V}(h) \subseteq \mathcal{V}(g)$

Dominating Guards

 g dominates $h \equiv \mathcal{V}(h) \subseteq \mathcal{V}(g)$

δ-Dominating Guards

$$
g \delta \text {-dominates } h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta
$$

δ-Dominating Guards

Hot Springs
Quinn Pk
Sphinx Lakes Split Mountain
Wren Peak

- coarse

δ-Dominating Guards

δ-Dominating Guards

$$
g \delta \text {-dominates } h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta
$$

δ-Dominating Guards

$$
g \delta \text {-dominates } h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta
$$

$g \delta$-dominates h
$h \delta$-dominates g

δ-Dominating Guards

$$
g \delta \text {-dominates } h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta
$$

$g \delta$-dominates h
$h \delta$-dominates g

We cannot throw away all δ-dominated guards!

δ-Dominating Guards

$g \delta$-dominates $h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta$
extend to sets of guards \mathcal{G} and \mathcal{H} :
$\mathcal{G} \delta$-dominates $\mathcal{H} \equiv \llbracket \mathcal{V}(\mathcal{H}) \backslash \mathcal{V}(\mathcal{G}) \rrbracket / \llbracket \mathcal{V}(\mathcal{H}) \rrbracket \leq \delta$

Find a minimum size set of guards \mathcal{D} that δ-dominate \mathcal{P}.

δ-Dominating Guards

$g \delta$-dominates $h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta$
extend to sets of guards \mathcal{G} and \mathcal{H} :
$\mathcal{G} \delta$-dominates $\mathcal{H} \equiv \llbracket \mathcal{V}(\mathcal{H}) \backslash \mathcal{V}(\mathcal{G}) \rrbracket / \llbracket \mathcal{V}(\mathcal{H}) \rrbracket \leq \delta$

Find a minimum size set of guards \mathcal{D} that δ-dominate \mathcal{P}.

Computing \mathcal{D} is NP-hard

δ-Dominating Guards

$g \delta$-dominates $h \equiv \llbracket \mathcal{V}(h) \backslash \mathcal{V}(g) \rrbracket / \llbracket \mathcal{V}(h) \rrbracket \leq \delta$
extend to sets of guards \mathcal{G} and \mathcal{H} :
$\mathcal{G} \delta$-dominates $\mathcal{H} \equiv \llbracket \mathcal{V}(\mathcal{H}) \backslash \mathcal{V}(\mathcal{G}) \rrbracket / \llbracket \mathcal{V}(\mathcal{H}) \rrbracket \leq \delta$

Find a minimal size set of guards \mathcal{D} that δ-dominate \mathcal{P}.

δ-Dominating Guards

Hot Springs Quinn Pk Sphinx Lakes Split Mountain Wren Peak
coarse

Using δ-Domination

Algorithm DominatingGuard $(\mathcal{T}, \varepsilon, \delta, \mathcal{P})$

1. Compute the viewsheds for all guards in \mathcal{P}.
2. Compute a minimal set of guards \mathcal{D} that δ-dominates \mathcal{P}.
3. Let $\delta=\llbracket \mathcal{V}(\mathcal{D}) \rrbracket / \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ be the fraction of $\mathcal{V}(\mathcal{P})$ covered by \mathcal{D}.
4. Let $\gamma=(\varepsilon-\delta) /(1-\hat{\delta})$ and let $\hat{\mathcal{T}}=\mathcal{V}(\mathcal{D})$.
5. return $\operatorname{GreedyGUaRD}(\hat{\mathcal{T}}, \gamma, \mathcal{D})$

Using δ-Domination

Algorithm DominatingGuard $(\mathcal{T}, \varepsilon, \delta, \mathcal{P})$

1. Compute the viewsheds for all guards in \mathcal{P}.
2. Compute a minimal set of guards \mathcal{D} that δ-dominates \mathcal{P}.
3. Let $\delta=\llbracket \mathcal{V}(\mathcal{D}) \rrbracket / \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ be the fraction of $\mathcal{V}(\mathcal{P})$ covered by \mathcal{D}.
4. Let $\gamma=(\varepsilon-\delta) /(1-\hat{\delta})$ and let $\hat{\mathcal{T}}=\mathcal{V}(\mathcal{D})$.
5. return AnyAlgorithmToComputeAn $\varepsilon-\operatorname{Cover}(\hat{\mathcal{T}}, \gamma, \mathcal{D})$

Using δ-Domination

Hot Springs Suinn Pk Sphinx Lakes Split Mountain Peak

Using δ-Domination

Using δ-Domination

Future Work

Quality guarantees on δ-domination.
Measure $\llbracket \mathcal{V}(g) \rrbracket$ by area instead of \# vertices.

Future Work

Quality guarantees on δ-domination.
Measure $\llbracket \mathcal{V}(g) \rrbracket$ by area instead of $\#$ vertices.

Thank you!

