Universität Augsburg University

 $\bullet g_1$

Frank Kammer Maarten Löffler Paul Mutser Frank Staals

 g_2

 g_3

 g_5

•91

Find a set of guards \mathcal{G} that can together completely see \mathcal{T}

 g_2

 g_3

 g_4

Find a smallest set of guards ${\mathcal G}$ that can together completely see ${\mathcal T}$

Find a smallest set of guards ${\mathcal G}$ that can together completely see ${\mathcal T}$

 g_2

 g_3

 g_4

Select \mathcal{G} from a set of potential guards \mathcal{P} . Guards are placed at height h above the terrain.

 g_5

 $\bullet g_1$

Practical Approaches to Partially Guarding a Polyhedral Terrain Find a smallest set of guards ${\cal G}$ that can together completely see ${\cal T}$ i.e. such that: $\mathcal{T} = \mathcal{V}(\mathcal{G})$ $\mathcal{V}(\mathcal{G}) = \bigcup_{g \in \mathcal{G}} \mathcal{V}(g)$ Select \mathcal{G} from a set of potential guards \mathcal{P} . Guards are placed at height h above the terrain. The part of \mathcal{T} visible from a point (guard) g = The viewshed $\mathcal{V}(g)$ of g $\mathcal{V}(g)$

 g_2

 g_3

• \mathcal{T} is often imprecise.

 $\bullet g_1$

• Vegetation, weather, etc influence visibility.

So, it may be sufficient to see a large part of \mathcal{T} .

 g_2

 g_3

• \mathcal{T} is often imprecise.

 $\bullet g_1$

• Vegetation, weather, etc influence visibility.

So, it may be sufficient to see a large part of \mathcal{T} .

Find a smallest set of guards \mathcal{G} such that $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket \ge (1 - \varepsilon) \llbracket \mathcal{T} \rrbracket$, for a given ε

 $[\![\mathcal{T}']\!] = \mathsf{the size of} \ \mathcal{T}'$

 g_2

 g_3

• \mathcal{T} is often imprecise.

 $\bullet g_1$

- Vegetation, weather, etc influence visibility.
- Terrain Guarding is NP-hard [Cole & Sharir, J. Sym. Comp '89]

 g_2

 g_3

• \mathcal{T} is often imprecise.

 $\bullet g_1$

- Vegetation, weather, etc influence visibility.
- Terrain Guarding is NP-hard [Cole & Sharir, J. Sym. Comp '89]
- NP-Hard to approximate #guards within a factor $O(\log n)$ [Eidenbenz *et al.*, Algoritmica '00]

Results

Experiments on real terrains showing:

NP-Hard to approximate the amount of terrain covered within a factor $O(\log n)$

Quality guarantees for a simple greedy algorithm

Observations to reduce the number of potential guards in \mathcal{P}

the #guards used for an $(1 - \varepsilon)$ -cover

the reduction of the #potential guards

Algorithm GREEDYGUARD $(\mathcal{T}, \varepsilon, \mathcal{P})$

- 1. Compute the viewsheds for all guards in \mathcal{P} .
- 2. Let $\mathcal{G} = \emptyset$ and $\mathcal{R} = \mathcal{P}$.
- 3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket < (1 \varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
- 4. Select a guard $g \in \mathcal{R}$ that maximizes the size $[\mathcal{V}(g) \setminus \mathcal{V}(\mathcal{G})]$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
- 5. Remove g from \mathcal{R} and add it to \mathcal{G} .
- 6. return \mathcal{G}

Algorithm GREEDYGUARD $(\mathcal{T}, \varepsilon, \mathcal{P})$

- 1. Compute the viewsheds for all guards in \mathcal{P} .
- 2. Let $\mathcal{G} = \emptyset$ and $\mathcal{R} = \mathcal{P}$.
- 3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket < (1 \varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
- 4. Select a guard $g \in \mathcal{R}$ that maximizes the size $[\mathcal{V}(g) \setminus \mathcal{V}(\mathcal{G})]$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
- 5. Remove g from \mathcal{R} and add it to \mathcal{G} .
- 6. return \mathcal{G}

Lemma 1. GREEDYGUARD computes an ε -cover of $\mathcal{T}' = \mathcal{V}(\mathcal{P})$ of at most $O(k/\varepsilon)$ guards, where k is the size of an optimal 0-cover of \mathcal{T}' .

Algorithm GREEDYGUARD $(\mathcal{T}, \varepsilon, \mathcal{P})$

- 1. Compute the viewsheds for all guards in \mathcal{P} .
- 2. Let $\mathcal{G} = \emptyset$ and $\mathcal{R} = \mathcal{P}$.
- 3. while $\llbracket \mathcal{V}(\mathcal{G}) \rrbracket < (1 \varepsilon) \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ and $\mathcal{R} \neq \emptyset$ do
- 4. Select a guard $g \in \mathcal{R}$ that maximizes the size $[\mathcal{V}(g) \setminus \mathcal{V}(\mathcal{G})]$, i.e., the size of the region it can cover but is not covered by \mathcal{G} yet.
- 5. Remove g from \mathcal{R} and add it to \mathcal{G} .
- 6. return \mathcal{G}

Lemma 1. GREEDYGUARD computes an ε -cover of $\mathcal{T}' = \mathcal{V}(\mathcal{P})$ of at most $O(k/\varepsilon)$ guards, where k is the size of an optimal 0-cover of \mathcal{T}' .

🔹 designed by 🥶 freepik.cor

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 2$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 3$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 4$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 6$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 8$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 9$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 10$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

$$|\mathcal{G}| = 10$$

Computing a 0.05-cover on a coarse Wren Peak using GREEDYGUARD

 $|\mathcal{G}| = 10$

We need another 15 guards to view all remaining vertices!

 $g \qquad \begin{array}{c} \text{Dominating Guards} \\ \text{dominates } h & \equiv \mathcal{V}(h) \subseteq \mathcal{V}(g) \end{array}$

g strictly dominates $h \equiv \mathcal{V}(h) \subset \mathcal{V}(g)$ Let $\mathcal{H} = \{p_1, ..., p_k, h\}$ be an ε -cover.

 $\begin{array}{ll} g \text{ strictly dominates } h &\equiv \mathcal{V}(h) \subset \mathcal{V}(g) \\ \text{Let } \mathcal{H} = \{p_1, .., p_k, h\} \text{ be an } \varepsilon\text{-cover.} \\ &\Longrightarrow \mathcal{G} = \{p_1, .., p_k, g\} \text{ is an } \varepsilon\text{-cover.} \end{array}$

 $\begin{array}{ll} g \text{ strictly dominates } h &\equiv \mathcal{V}(h) \subset \mathcal{V}(g) \\ \text{Let } \mathcal{H} = \{p_1, .., p_k, h\} \text{ be an } \varepsilon\text{-cover.} \\ &\Longrightarrow \mathcal{G} = \{p_1, .., p_k, g\} \text{ is an } \varepsilon\text{-cover.} \end{array}$

Observation 2. Let \mathcal{P} be a set of potential guards. There is an optimal (minimum size) ε -cover \mathcal{G} of $\mathcal{V}(\mathcal{P})$ such that no guard in \mathcal{G} is strictly dominated by any guard in \mathcal{P} .

Wren Peak

coarse

fine

Dominating Guards Wren Peak

coarse

fine

Wren Peak

coarse

fine

$g^{\bullet} h^{\bullet}$

δ -Dominating Guards

designed by 🌰 freepik.com

$\delta\text{-}\mathsf{Dominating}$ Guards

designed by 🎃 freepik.co

$\begin{aligned} \delta - \text{Dominating Guards} \\ g \ \delta \text{-dominates } h &\equiv \left[\left[\mathcal{V}(h) \setminus \mathcal{V}(g) \right] / \left[\left[\mathcal{V}(h) \right] \right] \leq \delta \end{aligned}$

extend to sets of guards \mathcal{G} and \mathcal{H} : $\mathcal{G} \ \delta$ -dominates $\mathcal{H} \equiv [\mathcal{V}(\mathcal{H}) \setminus \mathcal{V}(\mathcal{G})] / [\mathcal{V}(\mathcal{H})] \leq \delta$

Find a minimum size set of guards \mathcal{D} that δ -dominate \mathcal{P} .

extend to sets of guards \mathcal{G} and \mathcal{H} : $\mathcal{G} \ \delta$ -dominates $\mathcal{H} \equiv [\mathcal{V}(\mathcal{H}) \setminus \mathcal{V}(\mathcal{G})] / [\mathcal{V}(\mathcal{H})] \leq \delta$

Find a minimum size set of guards \mathcal{D} that δ -dominate \mathcal{P} .

Computing \mathcal{D} is NP-hard

$\begin{aligned} \delta - \text{Dominating Guards} \\ g \ \delta \text{-dominates } h &\equiv \left[\left[\mathcal{V}(h) \setminus \mathcal{V}(g) \right] / \left[\left[\mathcal{V}(h) \right] \right] \leq \delta \end{aligned}$

extend to sets of guards \mathcal{G} and \mathcal{H} : $\mathcal{G} \ \delta$ -dominates $\mathcal{H} \equiv [\mathcal{V}(\mathcal{H}) \setminus \mathcal{V}(\mathcal{G})] / [\mathcal{V}(\mathcal{H})] \leq \delta$

Find a minimal size set of guards \mathcal{D} that δ -dominate \mathcal{P} .

$\delta\text{-}\mathsf{Dominating}$ Guards

designed by 🥶 freepik.com

Algorithm DOMINATINGGUARD $(\mathcal{T}, \varepsilon, \delta, \mathcal{P})$

- 1. Compute the viewsheds for all guards in \mathcal{P} .
- 2. Compute a minimal set of guards \mathcal{D} that δ -dominates \mathcal{P} .
- 3. Let $\hat{\delta} = \llbracket \mathcal{V}(\mathcal{D}) \rrbracket / \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ be the fraction of $\mathcal{V}(\mathcal{P})$ covered by \mathcal{D} .

4. Let
$$\gamma = (\varepsilon - \delta)/(1 - \hat{\delta})$$
 and let $\hat{\mathcal{T}} = \mathcal{V}(\mathcal{D})$.

5. **return** GREEDYGUARD
$$(\hat{\mathcal{T}}, \gamma, \mathcal{D})$$

Algorithm DOMINATINGGUARD $(\mathcal{T}, \varepsilon, \delta, \mathcal{P})$

- 1. Compute the viewsheds for all guards in \mathcal{P} .
- 2. Compute a minimal set of guards \mathcal{D} that δ -dominates \mathcal{P} .
- 3. Let $\hat{\delta} = \llbracket \mathcal{V}(\mathcal{D}) \rrbracket / \llbracket \mathcal{V}(\mathcal{P}) \rrbracket$ be the fraction of $\mathcal{V}(\mathcal{P})$ covered by \mathcal{D} .

4. Let
$$\gamma = (\varepsilon - \delta)/(1 - \hat{\delta})$$
 and let $\hat{\mathcal{T}} = \mathcal{V}(\mathcal{D})$.

5. return ANYALGORITHMTOCOMPUTEAN ε -COVER $(\hat{\mathcal{T}}, \gamma, \mathcal{D})$

 $\varepsilon = 0.05$

designed by 🍲 freepik.com

 $\varepsilon = 0.05$

designed by 🍲 freepik.com

 $\varepsilon = 0.05$

of guards in \mathcal{G} was the same for all δ .

Future Work

Quality guarantees on δ -domination.

Measure $\llbracket \mathcal{V}(g) \rrbracket$ by area instead of # vertices.

designed by 🍲 freepik.com

Future Work

Quality guarantees on δ -domination.

Measure $\llbracket \mathcal{V}(g) \rrbracket$ by area instead of # vertices.

Thank you!

designed by 🤷 freepik.com