
EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Central Trajectories

Marc van Kreveld∗ Maarten Löffler∗ Frank Staals∗

Abstract

We study the problem of computing a suitable representa-
tive of a set of similar trajectories. To this end we define a
central trajectory C , which consists of pieces of the input
trajectories, switches from one entity to another only if
they are within a small distance of each other, and such
that at any time t, the point C(t) is as central as possible.
We measure centrality in terms of the radius of the smallest
disk centered at C(t) enclosing all entities at time t, and
discuss how the techniques can be adapted to other mea-
sures of centrality. For entities moving in R1 we show that
an optimal central trajectory C representing n trajectories,
each consisting of τ edges, has complexity Θ(τn2) and can
be computed in O(τn2 log n) time. For entities moving in
Rd with d ≥ 2, the complexity of C is at most O(τn5/2)
and can be computed in O(τn3) time.

1 Introduction

A trajectory is a sequence of time-stamped locations in
the plane, or more generally in Rd. Trajectory data is
obtained by tracking the movements of e.g. animals [1,
4, 6], hurricanes [8], traffic [7], or other moving entities
[5] over time. Large amounts of such data have recently
been collected in a variety of research fields. As a result,
there is a great demand for tools and techniques to analyze
trajectory data.

We study representing a set of (similar) trajectories by a
single representative trajectory that captures the defining
features of all trajectories in the set. Representative trajec-
tories are useful for example in clustering. When choosing
a representative trajectory for a group of similar trajecto-
ries, the first obvious choice would be to pick one of the
trajectories in the group. However, one can argue that no
single element in a group may be a good representative,
e.g. because each individual trajectory has some prominent
feature that is not shared by the rest (see Fig. 1(a)), or no
trajectory is sufficiently in the middle all the time. On the
other hand, it is desirable to output a trajectory that does
consist of pieces of input trajectories, because otherwise the
representative trajectory may display behaviour that is not
present in the input, e.g. because of contextual information
that is not available to the algorithm (see Fig. 1(b)).

∗Department of Information and Computing
Sciences, Universiteit Utrecht, The Netherlands,
{m.j.vankreveld|m.loffler|f.staals}@uu.nl. M.L.
and F.S. are supported by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.021.123 and 612.001.022, respectively.

(a)

(b)

Figure 1: (a) Every trajectory has a peculiarity that is not
representative for the set. (b) Taking the pointwise average
of a set of trajectories may result in one that ignores context.

Central trajectories. Buchin et al. [2] consider the prob-
lem of computing a median trajectory for a set of trajecto-
ries without time information. Their method considers the
trajectories as curves in the plane, and produces a trajectory
(curve) that consists of pieces of the input. In this work,
we focus on incorporating time into the representative. Ide-
ally, we would output a trajectory C such that at any time t,
C(t) is the point (entity) that is closest to its farthest entity.
Unfortunately, when the entities move in Rd for d > 1,
this may cause discontinuities. Such discontinuities are
unavoidable: if we insist that the output trajectory consists
of pieces of input trajectories and is continuous, then in
general, there will be no opportunities to switch from one
trajectory to another, and we are effectively choosing one
of the input trajectories again. At the same time, we do not
want to output a trajectory with arbitrarily large discontinu-
ities. An acceptable compromise is to allow discontinuities,
or jumps, but only over small distances, controlled by a pa-
rameter ε. We note that this problem of discontinuities also
shows up for representatives without time information and
entities moving in Rd, with d ≥ 3, because the traversed
curves generally do not intersect.

Problem description. We are given a set X of n enti-
ties, each moving along a piecewise linear trajectory in
Rd consisting of τ edges. We assume that all trajecto-
ries have their vertices at the same times t0, .., tτ . For
an entity σ, let σ(t) denote the position of σ at time t.
With slight abuse of notation we will write σ for both en-
tity σ and its trajectory. At a given time t, we denote
the distance from σ to the entity farthest away from σ by
Dσ(t) = D(σ, t) = maxψ∈X ‖σ(t)ψ(t)‖, where ‖pq‖ de-
notes the Euclidean distance between points p and q in Rd.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a preprint
rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

31st European Workshop on Computational Geometry, 2015

For ease of exposition, we assume that the trajectories are
in general position: that is, no three trajectories intersect in
the same point, and no two pairs of entities are at distance
ε from each other at the same time.

A trajectoid is a function that maps time to the set of
entities X , with the restriction that at discontinuities the
distance between the entities involved is at most ε. Intu-
itively, a trajectoid corresponds to a concatenation of pieces
of the input trajectories in such a way that two consecutive
pieces match up in time, and the end point of the former
piece is within distance ε from the start point of the latter
piece. More formally, for a trajectoid T we have that
• at any time t, T (t) = σ for some σ ∈ X , and
• at every time t where T has a discontinuity, that

is, T jumps from entity σ to entity ψ, we have that
‖σ(t)ψ(t)‖ ≤ ε.

Note that this definition still allows for a series of jumps
within an arbitrarily short time interval [t, t+ δ], essentially
simulating a jump over distances larger than ε. To make
the formulation cleaner, we slightly weaken the second
condition, and allow a trajectoid to have discontinuities
with a distance larger than ε, provided that such a large
jump can be realized by a sequence of small jumps, each
of distance at most ε. When it is clear from the context, we
will write T (t) instead of T (t)(t) to mean the location of
entity T (t) at time t. We now wish to compute a trajectoid
C that minimizes the function

D(T) =

∫ tτ

t0

D(T , t) dt.

So, at any time t, all entities lie in a disk of radius D(C , t)
centered at C(t).

Results. Because space restrictions, we present only the
situation where entities move in R1. Our approach can
be extended to Rd, as well as other measures of centrality.
For these results and all omitted proofs we refer to the full
version of this paper [9]. We show that the worst case com-
plexity of a central trajectory in R1 is Θ(τn2), and that we
can compute one in O(τn2 log n) time. For entities mov-
ing in Rd, for any constant d, the maximal complexity of a
central trajectory C is O(τn5/2). In this case, computing C
takes O(τn3) time and requires O(τn2 log n) space.

2 Preliminaries

Let X be the set of entities moving in R1. The trajectories
of these entities can be seen as polylines in R2: we associate
time with the horizontal axis, and R1 with the vertical axis
(see Fig. 2). We observe that the distance between two
points p and q in R1 is simply their absolute difference,
that is, ‖pq‖ = |p− q|.

Let I be the ideal trajectory, that is, the trajectory that
minimizesD but is not restricted to lie on the input trajecto-
ries. It follows that at any time t, I (t) is simply the average
of the highest entity U(t) and the lowest entity L(t). We

further subdivide each time interval Ji = [ti, ti+1] into
elementary intervals, such that I is a single line segment
inside each elementary interval.

Lemma 1 The total number of elementary intervals is
τ(n+ 2).

We assume without loss of generality that within each
elementary interval I coincides with the x-axis. To sim-
plify the description of the proofs and algorithms, we also
assume that the entities never move parallel to the ideal
trajectory, that is, there are no horizontal edges.

Lemma 2 C is a central trajectory in R1 if and only if it
minimizes the function

D′(T) =

∫ tτ

t0

|T (t)|dt.

By Lemma 2 a central trajectory C is a trajectoid that
minimizes the area D′(T) between T and the ideal trajec-
tory I . Hence, we can focus on finding a trajectoid that
minimizes D′.

3 Complexity of a Central Trajectory

Lemma 3 For a set of n trajectories in R1, each with ver-
tices at times t0, .., tτ , a central trajectory C may have worst
case complexity Ω(τn2).

Two entities σ and ψ are ε-connected at time t if there
is a sequence σ = σ0, .., σk = ψ of entities such that for
all i, σi and σi+1 are within distance ε of each other at
time t. A subset X ′ ⊆ X of entities is ε-connected at time
t if all entities in X ′ are pairwise ε-connected at time t.
The set X ′ is ε-connected during an interval I , if they are
ε-connected at any time t ∈ I . We now observe:

Observation 1 C can jump from entity σ to ψ at time t if
and only if σ and ψ are ε-connected at time t.

At any time t, we can partition X into maximal sets of
ε-connected entities. The central trajectory C must be in
one of such maximal sets X ′: it uses the trajectory of an
entity σ ∈ X ′ (at time t), if and only if σ is the entity from
X ′ closest to I . More formally, let fσ(t) = |σ(t)|, and let
L(F) = minf∈F f denote the lower envelope of a set of
functions F .

Observation 2 Let X ′ 3 σ be a maximal set of entities
that is ε-connected during interval J , and assume that C ∈
X ′ during J . For any time t ∈ J , we have that C(t) = σ(t)
if and only if fσ is on the lower envelope of the set F ′ =
{fψ | ψ ∈ X ′} at time t, that is, fσ(t) = L(F)(t).

Let X1, ..,Xm, denote a collection of maximal sets of
entities that are ε-connected during time intervals J1, .., Jm,
respectively. Let Fi = {fσ | σ ∈ Xi}, and let Li be the
lower envelope L(Fi) of Fi restricted to interval Ji. A

EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

(a) (b)

Figure 2: (a) A set of trajectories and the ideal trajectory I . The breakpoints in the ideal trajectory partition time into O(nτ)
intervals. (b) The trajectories after transforming I into a horizontal line.

lower envelope Li has a break point at time t if fσ(t) =
fψ(t), for σ, ψ ∈ Xi. There are two types of break points:
(i) σ(t) = ψ(t), or (ii) σ(t) = −ψ(t). At events of type
(i) the modified trajectories of σ and ψ intersect. At events
of the type (ii), σ and ψ are equally far from I , but on
different sides of I . Let B = {(t, σ, ψ) | Li(t) = fσ(t) =
fψ(t)∧i ∈ {1, ..,m}} denote the collection of break points
from all lower envelopes L1, ..,Lm.

Lemma 4 Consider a triplet (t, σ, ψ) ∈ B. There is at
most one lower envelope Li such that t is a break point in
Li.

Proof. Assume by contradiction that t is a break point in
both Li and Lj . At any time t, an entity can be in at most
one maximal set X`. So if Xi and Xj share either entity σ
or ψ, then the intervals Ji and Jj are disjoint. It follows
t cannot lie in both intervals, and thus cannot be a break
point in both Li and Lj . Contradiction. �

Lemma 5 Let A be an arrangement of n lines, describing
the movement of n entities during an elementary interval J .
If there is a break point (t, σ, ψ) ∈ B, with t ∈ J , of type
(ii), then σ(t) and ψ(t) lie on the boundary ∂Z of the zone
Z of I in A.

Lemma 6 Let A be an arrangement of n lines, describing
the movement of n entities during an elementary interval J .
The total number of break points (t, σ, φ) ∈ B, with t ∈ J ,
of type (ii) is at most 6.5n.

Lemma 7 The total complexity of all lower envelopes
L1, ..,Lm on [ti, ti+1] is O(n2).

Theorem 8 Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , a central trajectory C has worst
case complexity O(τn2).

Proof. A central trajectory C is a piecewise function. From
Observations 1 and 2 it now follows that C has a break
point at time t only if (a) two subsets of entities become
ε-connected or ε-disconnected, or (b) the lower envelope
of a set of ε-connected entities has a break point at time

t. Within a single time interval Ji = [ti, ti+1] there are at
most O(n2) times when two entities are at distance exactly
ε. Hence, the number of events of type (a) during interval
Ji is also O(n2). By Lemma 7 the total complexity of
all lower envelopes of ε-connected sets during Ji is also
O(n2). Hence, the number of break points of type (b)
within interval Ji is also O(n2). The theorem follows. �

4 Computing a Central Trajectory

We now present an algorithm to compute a trajectoid C
minimizing D′. By Lemma 2 such a trajectoid is a cen-
tral trajectory. The basic idea is to construct a weighted
(directed acyclic) graph that represents a set of trajectoids
containing an optimal trajectoid. We can then find C by
computing a minimum weight path in this graph.

The graph that we use is a weighted version of the Reeb
graph that Buchin et al. [3] use to model the trajectory
grouping structure. We review their definition here. The
Reeb graph R is a directed acyclic graph. Each edge
e = (u, v) of R corresponds to a maximal subset of enti-
ties Ce ⊆ X that is ε-connected during the time interval
[tu, tv]. The vertices represent times at which the sets of
ε-connected entities change, that is, the times at which two
entities σ and ψ are at distance ε from each other and the set
containing σ merges with or splits from the set containing
ψ. See Fig. 3 for an illustration.

By Observation 1 a central trajectory C can jump from
σ to ψ if and only if σ and ψ are ε-connected, that is, if
σ and ψ are in the same component Ce of edge e. From
Observation 2 it follows that on each edge e, C uses only
the trajectories of entities σ for which fσ occurs on the
lower envelope of the functions Fe = {fσ | σ ∈ Ce}.
Hence, we can then express the cost for C using edge e by

ωe =

∫ tv

tu

L(Fe)(t) dt.

It now follows that C follows a path in the Reeb graph
R, that is, the set of trajectoids represented byR contains
a trajectoid minimizing D′. So we can compute a central
trajectory by finding a minimum weight path inR from a
source to a sink.

31st European Workshop on Computational Geometry, 2015

Figure 3: The Reeb graph for a set of moving entities. The
dashed lines indicate that two entities are at distance ε.

Analysis. First we compute the Reeb graph as defined by
Buchin et al. [3]. This takesO(τn2 log n) time. Second we
compute the weight ωe for each edge e. The Reeb graph
R is a DAG, so once we have the edge weights, we can
use dynamic programming to compute a minimum weight
path in O(|R|) = O(τn2) time. So all that remains is to
compute the edge weights ωe. For this, we need the lower
envelope Le of each set Fe on the interval Je. To compute
the lower envelopes, we need the ideal trajectory I , which
we can compute I in O(τn log n) time by computing the
lower and upper envelope of the trajectories in each time
interval [ti, ti+1].

Lemma 7 implies that the total complexity of all lower
envelopes is O(τn2). To compute them we have two op-
tions. We can simply compute the lower envelope from
scratch for every edge ofR. This takes O(τn2 ·n log n) =
O(τn3 log n) time. Instead, for each time interval Ji =
[ti, ti+1], we compute the arrangement A representing the
modified trajectories on the interval Ji, and use it to trace
Le in A for every edge e ofR.

Using a standard sweep line algorithm, an arrangement
of m line segments can be built in O((m+A) logm) time,
where A is the output complexity. We have O(n2) line
segments: n+ 2 per entity. Since each pair of trajectories
intersects at most once during Ji, we have A = O(n2).
Thus, we build A in O(n2 log n) time. The arrangement
represents all break points of type (i), of all functions fσ.
Next, we compute all pairs of points in A corresponding
to break points of type (ii). We do this in O(n2) time by
traversing the zone of I in A.

We now trace the lower envelopes through A: for each
edge e = (u, v) in the Reeb graph with Je ⊆ Ji, we start
at the point σ(tu), σ ∈ Ce, that is closest to I , and then
follow the edges in A corresponding to Le, taking care to
jump when we encounter break points of type (ii). Our
lower envelopes are all disjoint (except at endpoints), so
we traverse each edge in A at most once. The same holds
for the jumps. We can avoid costs for searching for the
starting point of each lower envelope by tracing the lower
envelopes in the right order: when we are done tracing Le,

with e = (u, v), we continue with the lower envelope of
an outgoing edge of vertex v. If v is a split vertex where
σ and ψ are at distance ε, then the starting point of the
lower envelope of the other edge is either σ(tv) or ψ(tv),
depending on which of the two is farthest from I . It follows
that when we have A and the list of break points of type
(ii), we can compute all lower envelopes in O(n2) time.
We conclude:

Theorem 9 Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , we can compute a central trajec-
tory C in O(τn2 log n) time using O(τn2) space.

5 Entities Moving in Rd

For entities moving in R1 we used that computing a cen-
tral trajectory was equivalent to finding a trajectoid that
minimizes the distance to the ideal trajectory. In Rd, with
d > 1, however, this is no longer true. Instead, we directly
use the functions Dσ expressing the distance between an
entity σ and the entity furthest away from σ. We can then
still use Observations 1 and 2 to bound the complexity of C
byO(τn5/2). An algorithm similar to that of Section 4 that
runs in O(τn3) time can then be used to compute a central
trajectory. The details can be found in the full version [9].

References

[1] P. Bovet and S. Benhamou. Spatial analysis of animals’ move-
ments using a correlated random walk model. J. Theoretical
Biology, 131(4):419–433, 1988.

[2] K. Buchin, M. Buchin, M. van Kreveld, M. Löffler, R. I.
Silveira, C. Wenk, and L. Wiratma. Median trajectories.
Algorithmica, 66(3):595–614, 2013.

[3] K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, and
F. Staals. Trajectory grouping structure. In Proc. 2013 WADS
Algorithms and Data Structures Symposium, volume 8037 of
LNCS, pages 219–230. Springer, 2013.

[4] C. Calenge, S. Dray, and M. Royer-Carenzi. The concept of
animals’ trajectories from a data analysis perspective. Eco-
logical Informatics, 4(1):34 – 41, 2009.

[5] S. Dodge, R. Weibel, and E. Forootan. Revealing the physics
of movement: Comparing the similarity of movement char-
acteristics of different types of moving objects. Computers,
Environment and Urban Systems, 33(6):419–434, 2009.

[6] E. Gurarie, R. D. Andrews, and K. L. Laidre. A novel method
for identifying behavioural changes in animal movement data.
Ecology Letters, 12(5):395–408, 2009.

[7] X. Li, X. Li, D. Tang, and X. Xu. Deriving features of traffic
flow around an intersection from trajectories of vehicles. In
Proc. 18th Int. Conf. on Geoinf., pages 1–5. IEEE, 2010.

[8] A. Stohl. Computation, accuracy and applications of trajecto-
ries – a review and bibliography. Atmospheric Environment,
32(6):947 – 966, 1998.

[9] M. van Kreveld, M. Löffler, and F. Staals. Central trajectories.
CoRR, abs/1501.01822, 2015.

