
Competitive Query Strategies for Minimising the Ply
of the Potential Locations of Moving Points

William Evans David Kirkpatrick
Department of Computer Science

University of British Columbia, Canada
will@cs.ubc.ca kirk@cs.ubc.ca

Maarten Löffler Frank Staals
Department of Information and Computing Sciences

Utrecht University, the Netherlands
m.loffler@uu.nl f.staals@uu.nl

ABSTRACT
We study the problem of maintaining the locations of a col-
lection of n entities that are moving with some fixed up-
per bound on their speed. We assume a setting where we
may query the current location of entities, but handling this
query takes a certain unit of time, during which we cannot
query any other entities. In this model, we can never know
the exact locations of all entities at any one time. Instead,
we maintain a representation of the potential locations of all
entities. We measure the quality of this representation by its
ply : the maximum number of entities that could potentially
be at the same location.

Since the ply could be large for every query strategy, we
analyse the performance of our algorithms in a competi-
tive framework: we consider the worst case ratio of the ply
achieved by our algorithms to the intrinsic ply (the small-
est ply achievable by any algorithm, even one that knows in
advance the full trajectories of all entities). We show that,
if our goal is to mimimise the ply at some number τ of time
units in the future, an O(1)-competitive algorithm exists,
provided τ is sufficiently large. If τ is small and the n en-
tities move in any constant dimension d, our algorithm is

O
(

(`
τ

+ 1)d−
d

d+1

)
-competitive, where ` is the average time

since the last query over all entities. We also provide match-
ing lower bounds, and we show that computing the intrinsic
ply exactly is NP-hard, even when the trajectories are known
in advance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’13, June 17-20, 2013, Rio de Janeiro, Brazil.
Copyright 2013 ACM 978-1-4503-2031-3/13/06 ...$15.00.

1. INTRODUCTION
Due to the rapid growth in availability of cheap location-

aware mobile devices, data in motion is increasingly be-
coming a topic of interest to researchers in various appli-
cation fields, such as GIS, sensor networks, social networks,
robotics, etc. [2, 8, 19, 24]. Although these applications are
very different, they share some important characteristics:
the motion they deal with is often unpredictable, and data
must be processed in real-time. These two aspects make it
hard to apply traditional geometric algorithms.

The first challenge arises from the unpredictable nature of
the data. In computational geometry, there is an extensive
history on data in motion: kinetic data models [1, 3, 12, 13]
can be used to study the complexity and structural changes
of geometric objects in motion. However, they were devel-
oped to deal with moving data in a controlled environment
and rely on the possibility to predict, at least locally, the
trajectory a moving point will follow. More recently, several
isolated efforts have been made to deal with data in much
less restricted models of motion (though some assumptions
are still necessary, such as an upper bound on the speed of
moving points) [22, 6, 7, 9, 11, 18, 23].

The second challenge is obtaining and processing the data
in real-time. Traditional algorithms work on the assump-
tion that data is first collected and stored in a central lo-
cation, and then analysed, preferably as quickly as possible
(i.e., minimising computation time). The online algorithms
framework lifts this assumption, and allows data to be pro-
cessed as it arrives, but ignores the cost of obtaining the
data and does not permit the algorithm to influence the or-
der in which the data arrives. In modern applications, a
significant cost may be associated with obtaining the loca-
tions of the entities being studied, and computation time
may not be the restricting factor. On the other hand, in the
update complexity model, one is given an incomplete data
set on which some structure (for example, the Delaunay tri-
angulation) has to be computed using a minimum number
of “updates”[4, 10, 14, 15, 20, 21]. Here, an update typ-
ically returns additional information (precision) about the
location of a specified data point. However, this has mostly
been considered in a static context.

Model and contribution.
When dealing with real-time data in motion that takes a

certain amount of time to obtain, minimising the number
of required updates may not be the true goal. Instead, we
should try to maximise the effect of the updates that we can

Figure 1: Illustrating the model at three subsequent
time steps. In each step, one disk (green) is queried,
resulting in a point (red) at the next step. All other
disks grow in diameter by 1.

make, knowing that each update of one entity takes time
during which all entities may move.

There is a natural connection between data imprecision
and data in unpredictable motion. When one knows the lo-
cation of a moving entity at a certain time, but does not
constantly refresh this information, the entity can be any-
where in a region of potential locations, typically a ball (stale
data). A natural question is whether it is possible to keep
track of imprecise and moving data using queries, that take
unit time, to individual data items.

In this paper, we consider one fundamental interpretation
of this question. Given a set of entities moving unpredictably
with a bounded speed, we wish to maintain a representation
of their potential locations that can distinguish them as well
as possible. At any point in time, we measure this by the
ply [17] of the set of balls: the maximum number of balls
that contain any given point in Rd. In many applications
involving imprecise numbers or points, a low ply implies
more efficient algorithms [5, 16].

1.1 Problem statement
We consider the following setting. Let E be a set {e1, e2,

. . . , en} of point entities in Rd, where every entity ei has an
associated (unknown) trajectory fi, which is a continuous
function from time (R) to position (Rd, for some dimension
d). An entity can move in any direction with a maximum
speed of 1/2 per unit of time. We wish to maintain a rep-
resentation of the locations of these entities. To do this, we
are allowed to query the current location of a given entity,
which takes an amount of time which we assume to be 1.1

As a result, at any point t in time, each entity ei can be rep-
resented by a ball Bi(t) of possible locations, which we refer
to as the uncertainty region for ei. This ball is centered at
fi(ti), the location of ei at its most recent query time ti, and
has diameter di(t) = t − ti. Figure 1 illustrates the model
in R2.

Let E ′ = {e′1, e′2, . . . , e′m} be any subset of the entities in
E . We say that the collection B′ = {B1, B2, . . . Bm} of balls,
forms an uncertainty realisation of E ′ at time t if there exists
a sequence of distinct query times t1, t2, . . . tm, all less than
t, such that Bi has center fi(ti) and diameter di(t). We refer
to the minimum, over all uncertainty realisations B′ of E ′,
of the ply of B′, as the intrinsic ply of the set E ′.

Now, the question is: what is a good query strategy?

1 Note that setting both the speed limit and sampling time
does not restrict the generality of the problem. We chose
1/2 because this will turn out to be convenient later.

Clearly, we might as well make a new query at every unit
of time. Also clearly, we might not be able to ensure a
good ply with any strategy, if the entities move too close
together. Therefore, we apply a form of competitive analy-
sis. Since the set of uncertainty regions associated with any
query strategy at some fixed time t provides an uncertainty
realisation of the set of entities E ′ at time t, the intrinsic
ply of E ′ provides a lower bound on the ply that could be
achieved by any query strategy that attempts to minimise
ply at time t, even one that has full knowledge of the tra-
jectories of the entities involved.

Single shot and recurrent ply minimisation.
A common situation is that, at current time t, we are

interested in the uncertainty regions associated with a set
of entities at some future time t∗ = t + τ . When t∗ is
understood, we refer to these as their projected uncertainty
regions. The projected uncertainty region B∗i = Bi(t

∗) of
an entity ei has diameter di(t) + τ . Note that this means
that the entity queried at time t, when the remaining time
is τ , has diameter τ .

We begin by considering the single shot problem in which
we start at a time t0 and the goal is to minimise the ply of
the uncertainty regions at one fixed time t∗ = t0 + τ which
lies τ > 0 time units in the future.

Figure 2(a) illustrates a collection of trajectories and their
associated uncertainty regions for d = 1, as time progresses.
In the single shot problem we are only interested in the un-
certainty regions at time t∗. That is, the intersection of the
brown cones with the horizontal line at t∗.

We also consider a recurrent version of ply minimisation in
which the goal is to minimise the ply at regular checkpoints,
spaced τ units apart.

1.2 Overview of results
In this paper we present competitive algorithms to query

a set of moving entities in Rd to minimise the ply of their
uncertainty regions at a given time τ time units in the fu-
ture. We show that if τ is large enough, at least twice as
large as the number of entities n, then our algorithm can
achieve a competitive ratio in O(1). When we have less
than 2n remaining time, the competitive ratio depends on
the average time ` since the last query, and hence the average
initial size of the uncertainty regions. More precisely, our al-

gorithms obtain a competitive ratio of O
(

(`/τ + 1)d−
d

d+1

)
,

for any constant d. In Section 3 we provide a lower bound on
the competitive ratio, which shows that our algorithms are
within a constant factor of the best achievable competitive
ratio. We show that computing the intrinsic ply of the enti-
ties exactly is NP-hard in Section 4, and we briefly discuss
the recurrent version of the problem in Section 5.

2. COMPETITIVE ALGORITHMS
FOR THE SINGLE SHOT PROBLEM

Recall that our input is a set E of n entities {e1, e2, . . . , en}
where every entity ei has an associated (unknown) trajectory
fi and a most recent query time ti ∈ Z. We start at time t0,
and our goal is to minimise the ply at given time t∗ = t0 +τ ,
with τ > 0. We will denote the intrinsic ply of E at time t∗

by ∆. We start with some basic observations and lemmas
that form the core of our algorithms.

A
B

ti
m
e

t

space
ti
m
e

t∗

space

(a) (b)

Figure 2: (a) The single shot problem for d = 1. The true trajectory of each entity is a y-monotone curve
with a slope bounded by 1/2, and is drawn in green. (b) Showing two sets of intervals A and B, coming from
different samplings of the same entities.

Observation 2.1. Suppose that A = {A1, .., An} and B =
{B1, .., Bn} are uncertainty realisations of the entities in E
at time t. Then for all 1 ≤ i ≤ n, Ai ⊆ Bi or Bi ⊆ Ai.

Proof: Suppose w.l.o.g. that Bi has diameter di and that
the diameter of Ai is di + u, for some non-negative integer
u. Then the center of Bi (the location of ei at time t− di),
must lie in the ball of diameter u centered at the center of
Ai (the location of ei at time t − di − u). It follows that
Bi ⊆ Ai.

Let νd = πd/2

Γ(d/2+1)
be the volume coefficient of a d-dimen-

sional ball. For a set of balls B, let the span of B denote the
d-dimensional volume of their union.

Lemma 2.2. Let B be any uncertainty realisation of a set
of entities E at time t, whose intrinsic ply at the same time
is ∆. Then the span of B is at least Cd|E|d+1/∆ where
Cd = νd

(d+1)4d for d ≥ 1.

Proof: Let B = {B1, B2, . . . , Bn} be the uncertainty reali-
sation of E , and letA = {A1, A2, . . . , An} be any uncertainty
realisation of E that realises the intrinsic ply ∆ of E at time
t. The span of B is vol

(⋃n
i=1 Bi

)
, which satisfies:

vol

(
n⋃
i=1

Bi

)
≥ vol

(
n⋃
i=1

Ai ∩Bi

)

≥ 1

∆

n∑
i=1

min{vol (Ai) , vol (Bi)}

where the last inequality holds because either Ai ⊆ Bi or
Bi ⊆ Ai for all i (Observation 2.1), and the regions {A1 ∩
B1, A2 ∩ B2, . . . An ∩ Bn} have ply at most ∆. Since the
smallest uncertainty region has diameter 1 and each set A
and B contains regions with distinct integral diameters,

n∑
i=1

min{vol (Ai) , vol (Bi)} ≥

n∑
i=1

min{Vd(i/2), Vd((n− i+ 1)/2)} = 2

dn/2e∑
i=1

Vd(i/2).

2 5 3 2 2 0 0 0

244

4 5 4

4

2

2

2 22

2

1

12

32

111

1 1

1

Figure 3: A set of uncertainty regions B and a
partition Ξ of R2 into cells. The heaviness of each
cell is given; cell of heaviness at least 4 are shaded.

where Vd(r) = νdr
d is the volume of a d-dimensional ball

with radius r. The result follows by bounding the sum by
an integral.

For a positive number w, we define a w-partition of Rd to
be a regular grid with cells of width w; that is, the set of
hypercubes of the form Ξ = {[i1w, (i1 + 1)w] × [i2w, (i2 +
1)w]× . . .× [idw, (id + 1)w] | i ∈ Zd}. We say a cell ξ ∈ Ξ is
h-heavy with respect to a set of d-dimensional balls B, if at
least h balls of B intersect ξ. These definitions are illustrated
for d = 2 in Figure 3.

Lemma 2.3. Let B be any collection of uncertainty re-
gions at time t of maximum diameter w, whose associated
entities have intrinsic ply ∆ at time t. Then at most

6w
(

∆
Cdh

)1/d

regions in B intersect an h-heavy cell in any

w-partition of Rd.

Proof: Suppose that z regions intersect heavy cells.
These z regions must have span at least Cdz

d+1/∆ by Lemma
2.2. Thus they intersect at least Cdz

d+1/(∆wd) cells of size
w, in total. Some of these cells may be light (non-h-heavy),
but every light cell must be adjacent to at least one heavy
cell since each cell is intersected by an uncertainty region
with diameter at most w that intersects a heavy cell. Thus at
least one of every 3d of these cells is heavy and consequently

there are at least Cdz
d+1/(∆(3w)d) heavy cells. These heavy

cells are each intersected by at least h regions, so there are a
total of hCdz

d+1/(∆(3w)d) region intersections with heavy
cells. This means that 2dz ≥ hCdzd+1/(∆(3w)d), since each

region intersects at most 2d cells. Thus, z ≤ 6w
(

∆
Cdh

)1/d

.

2.1 A competitive algorithm for τ ≥ 2n

In the case that we start with sufficient time relative to
the number of entities, we can show that the following sim-
ple algorithm produces a solution of ply O(∆), that is, we
can guarantee a constant competitive ratio in any fixed di-
mension. The algorithm is as follows:

Algorithm PlentyOfTime(E , τ)
Input. A set of n entities E , and the remaining time τ , with
τ ≥ 2n.
1. if τ > 0 then
2. Wait (query nothing) for τ − 2n time steps.
3. Query all entities in E once.
4. Let B = {B1, .., Bn} be the projected uncertainty

regions associated with entities in E .
� The max. diameter of the regions in B is 2n. �

5. Form a 2n-partition of Rd, and choose the smallest
h so that at most n/2 regions in B intersect h-heavy
cells.

6. Let E ′ ⊆ E be the entities whose projected uncer-
tainty regions intersect h-heavy cells.

7. Recursively call PlentyOfTime(E ′, n).

Lemma 2.4. Algorithm PlentyOfTime with n entities
that have intrinsic ply ∆ at time t∗ = t0 + τ , with τ ≥
2n, yields uncertainty regions at time t∗ with ply at most
(24)d∆/Cd.

Proof: Consider any call to PlentyOfTime with input
Ê ⊆ E and remaining time τ̂ ≤ τ . Note that the assump-
tions on the input are satisfied in any recursive call since
|E ′| ≤ n/2. From Lemma 2.3 with t = t∗ it follows that

the algorithm will choose h ≤ (24)d∆̂/Cd, where ∆̂ is the

intrinsic ply of the set Ê . Since Ê ⊆ E , the intrinsic ply ∆
of E is at least ∆̂. Hence, h ≤ (24)d∆/Cd.

The entities that we set aside before each recursive call to
PlentyOfTime intersect only non-h-heavy cells, so their
projected uncertainty regions cover a space that has ply less
than h, no matter how the other entities are queried. Even-
tually, all entities are set aside and the result of the algo-
rithm’s queries is a set of uncertainty regions at time t∗ with
ply less than (24)d∆/Cd.

2.2 A competitive algorithm for τ = n

When τ ≤ 2n, we can no longer afford to start by querying
all entities at least once. We investigate how to determine
a subset of entities to focus on without querying the others
ever, and how this influences the competitive ratio. The
competitive ratio now not only depends on the intrinsic ply
∆, but also on the average time since the last query to an
entity. We focus first on the case τ = n, and then describe
the general algorithm later.

The main idea is to set aside entities until we are in the
situation where we have twice as much time as entities again,
so we can apply PlentyOfTime. The key observation is

that the ply of the projected uncertainty regions associated
with the entities that we set aside is not too large.

We begin with n entities, τ = n remaining time, and `
the average time since the last query over all entities. With
maximum speed 1/2, ` + τ is the average diameter of the

entities’ projected uncertainty regions. Let λ =
(
`+τ
τ

)d
.

Algorithm NoTimeToLose!(E , τ)
Input. A set E of n entities and τ = n remaining time; ` is
the average time since the last query over all entities.
� The average diameter of the projected uncertainty regions
is `+ τ = λ1/dτ . �

1. J = ∅
2. until |J | ≥ 2τ/λ1/(d+1)

3. � Call an entity narrow if its projected uncertainty
region has diameter ≤ 2(`+ τ). �

4. Choose a maximal disjoint set I of narrow entities
in E \ J .

5. if |I| ≤ 1 then Query all entities in E once & stop.
6. else J = J ∪ I
7. Set aside the entities in J and query each of the re-

maining at most τ − 2τ/λ1/(d+1) entities once, in any
order.

8. Form a τ -partition of Rd, and choose the smallest h so
that at most τ/λ1/(d+1) of the remaining projected un-
certainty regions intersect h-heavy cells. Set aside the
entities whose projected uncertainty regions intersect
only non-h-heavy cells.

9. Let E ′ be the at most τ/λ1/(d+1) remaining entities,

and let τ ′ = 2τ/λ1/(d+1) be the remaining time.
10. Call PlentyOfTime(E ′, τ ′).

Lemma 2.5. The ply of the regions produced if NoTime-
ToLose! stops at line 5 is O((n/∆)d/(d+1))∆.

Proof: Let p be the ply of the uncertainty regions (at
time t∗) produced at line 5 and let B be a subset of p of
these regions that all contain a common point. Since ev-
ery region in B has diameter at most n, the span of B is
at most (2n)d. The entities associated with the regions B
have intrinsic ply at most ∆, so, by Lemma 2.2, their span
is at least Cdp

d+1/∆. Together, these bounds imply that

p ≤ ∆1/(d+1)(2n)d/(d+1)/C
1/(d+1)
d .

Lemma 2.6. NoTimeToLose! in line 7 sets aside re-
gions that contribute at most 4λd/(d+1)∆(12)d/Cd to the
final ply.

Proof: Since `+ τ is the average diameter of the projected
uncertainty regions, n/2 = τ/2 of these (the narrow entities)
have projected uncertainty regions of maximum diameter at
most 2(` + τ). These narrow entities have intrinsic ply at
most ∆ and, by Lemma 2.2, their associated projected un-
certainty regions have span at least τd+1Cd/(2

d+1∆). If we
choose any narrow region, that region and all the narrow
regions that it intersects have span at most 6d(`+ τ)d. So
we can find a disjoint subset of narrow regions of size at
least τCd/(2(12)dλ∆), using a simple greedy algorithm that
repeatedly chooses a narrow region that does not intersect
any previously chosen regions. If we can only find one such
region then τ = n ∈ O(λ∆) and we stop. Otherwise, if we
remove this ply-one subset and repeat with the remaining
narrow regions for at most 4λd/(d+1)∆(12)d/Cd rounds, we

construct a set of at least 2τ/λ1/(d+1) regions whose collec-

tive ply is at most 4λd/(d+1)∆(12)d/Cd.
Note that line 7 sets aside entities whose collective ply

must be added to the ply we obtain by querying the remain-
ing entities. This is in contrast to the entities we set aside
in line 8, whose projected uncertainty regions cover a space
that has ply less than h, no matter how the other entities
are queries.

Lemma 2.7. Line 8 in algorithm NoTimeToLose! can
be implemented with a heaviness threshold h of at most
6dλd/(d+1)∆/Cd.

Proof: After line 7 of the algorithm, all remaining entities
have a projected uncertainty region with diameter at most
τ . By Lemma 2.3, with t = t∗ and h = 6dλd/(d+1)∆/Cd, at

most τ/λ1/(d+1) uncertainty regions intersect h-heavy cells.

Thus, the regions set aside in line 8 cover a space that
has final ply at most 6dλd/(d+1)∆/Cd no matter how the
remaining entities are queried. After line 8, we still have
2τ/λ1/(d+1) time and τ/λ1/(d+1) entities remaining. Hence,
we can use algorithm PlentyOfTime. The intrinsic ply of
the remaining entities is at most ∆ (since they form a subset
of E), so PlentyOfTime yields a set of uncertainty regions
at time t∗ with ply at most (24)d∆/Cd. We conclude:

Lemma 2.8. Algorithm NoTimeToLose! with n entities
that have been last queried, on average, at time t0 − ` and
have intrinsic ply ∆ at time t∗ = t0 + τ yields uncertainty
regions at time t∗ with ply O(min{n/∆, λ}d/(d+1))∆, where

λ =
(
`+τ
τ

)d
.

2.3 A competitive algorithm for all cases
We now extend the algorithm to an arbitrary amount of

time. The focus is on identifying a suitable subset of entities
to query, such that (i) their projected uncertainty regions
have a ply that is not too high, and (ii) we end up in a
situation where we can use one of our previous algorithms.

Lemma 2.9. The set J of entities chosen in line 3 of
MinimisePly contribute at most ∆ to the final ply.

Proof: Let ∆J be the ply of the projected uncertainty re-
gions of the entities in J . Note that any uncertainty reali-
sation of the entities at time t∗ must include at least n− τ
regions that coincide with initial projected uncertainty re-
gions (since the associated entities were never queried). The
ply of this collection must be at least ∆J , by construction.
But it must also be no more than ∆, the intrinsic ply of the
full set of entities at time t∗.

Theorem 2.10. Algorithm MinimisePly with n entities
that have been last queried, on average, at time t0 − ` and
have intrinsic ply ∆ at time t∗ = t0 + τ yields uncertainty
regions at time t∗ with ply

O(1)∆, if τ ≥ 2n,

O(min{n/∆, λ, αd+1}d/(d+1))∆, if τ = n+ n/α and

1 < α ≤ n,

O(min{n/∆, λ}d/(d+1))∆, otherwise (i.e. if τ ≤ n),

where λ =
(
`+τ
τ

)d
.

Algorithm MinimisePly(E , τ)
Input. A set E of n entities and τ remaining time; ` is the
average time since the last query over all entities.
� The average diameter of the projected uncertainty regions
is `+ τ = λ1/dτ . �

1. if τ ≥ 2n then Call PlentyOfTime(E , τ).
2. else if τ ≤ n
3. Choose a set J of n − τ entities whose projected

uncertainty regions have minimum collective ply.
� In fact, a set with ply that is within a constant
factor of the minimum ply will suffice. �

4. Call NoTimeToLose!(E \ J , τ).
5. else
6. Let α = n/(τ − n). � Note: 1 < α ≤ n and

τ = n+ n/α. �

7. if λ < αd+1 then
8. Query the τ − n entities with largest projected

uncertainty regions. � Now we have n entities
with remaining time τ ′ = n and with projected
uncertainty regions of average diameter at most
λ1/dτ < 2λ1/dτ ′. �

9. Call NoTimeToLose!(E , τ ′).
10. else
11. Query all entities in E once. � Now the maxi-

mum diameter of the regions is τ . �

12. Form a τ -partition of Rd, and choose the small-
est h so that at most n/(2α) regions intersect
h-heavy cells.

13. Let E ′ ⊆ E be the entities whose projected un-
certainty regions intersect h-heavy cells.

14. Call PlentyOfTime(E ′, n/α).

Proof: If τ ≥ 2n, the result follows from Lemma 2.4. If
τ ≤ n, the result follows from Lemmas 2.8 and 2.9. Oth-
erwise, suppose that τ = n + n/α, for some α, 1 < α ≤ n.
If α is relatively large (λ < αd+1), we reduce to the case
when τ = n by querying the τ − n entities with the largest
initial projected uncertainty regions, in any order, produc-
ing an instance of the original problem with n entities at
time τ ′ = n whose projected uncertainty regions have an
average diameter of at most λ1/dτ < 2λ1/dτ ′. A direct ap-
plication of algorithm NoTimeToLose! from the previous
section produces a solution with guaranteed competitive ra-
tio O(min{n/∆, λ}d/(d+1)).

If α is relatively small (λ ≥ αd+1), we reduce to the case
when τ ≥ 2n. We query all entities once, leaving n/α time
remaining, so that the maximum region diameter is τ = n+
n/α. We chose h = (24α)d∆/Cd and appeal to Lemma 2.3
to keep at most n/(2α) entities. The entities that we set
aside have projected uncertainty regions that cover a space
with ply at most h, no matter how the remaining entities
are queried.

Observation 2.11. The bounds on competitive ratio hold
when the entities move at any bounded speed.

3. A LOWER BOUND
ON THE COMPETITIVE RATIO

We now prove that the competitive ratios obtained by
our algorithms are within a constant factor of the optimum.
First, note that any query strategy with any set of entities
with intrinsic ply ∆ can only achieve final ply Ω(1)∆, so we

3 4 8 15 92 6 7

t∗ − τ/2

t∗

t∗ − τ

τ/2 τ/2 τ/2
space

ti
m
e

Figure 4: Illustrating the construction of Theorem 3.2, for d = 1, s = 3 and m = 3. The trajectories of the
special entities coincide with the left edge of the triangles up until time t = t∗ − τ/2.

will focus on the case τ < 2n. Let τ = n+n/α for α > 1. (If
τ < n, we rely on the lower bound for τ = n.) We describe
a set of entities E , all with projected uncertainty regions of
diameter `+ τ , such that any query strategy can be forced,
by relabeling entities with identical regions, to achieve final
ply Ω(κd/(d+1))∆ where κ = min{n/∆, λ, (α/16)d+1} and

λ =
(
`+τ
τ

)d
.

We construct a collection of s = n/(κ∆) sets E1, . . . , Es
(since κ∆ ≤ n, there is at least one), each consisting of κ∆
entities, where the entities in Ei all have the same projected
uncertainty region Ri, of diameter ` + τ (where ` + τ =

λ1/dτ ≥ κ1/dτ by choice of κ), that is disjoint from all other
regions Rj , j 6= i. We assign regions of diameters 1, 2, . . . , n
to the n entities, that realise the intrinsic ply ∆, so that each
set is assigned m = ∆(κ/2)d/(d+1) small regions. (A region

is small if it has diameter at most ms = n/(κ2d)1/(d+1).)
We pack the small regions into the “leftmost” n/2 < τ/2-
diameter portion of Ri. This is possible since each small
region has volume at most c(ms)d (for some constant c), so
the sum of the volumes of all the small regions assigned to
Ei is at most cmd+1sd, which fit with ply ∆ in a volume
of at most c′md+1sd/∆ = c′(n/2)d (for some constant c′),
which has diameter n/2.

In each set Ei, the trajectories followed by entities asso-
ciated with small regions (special entities) are identical up
until τ/2 time remains. (In particular, they all contain the
“leftmost” point in Ri. See Figure 4 for an illustration for
the case d = 1.) Thus any of the first τ/2 queries is unable
to distinguish these special entities. Let E =

⋃s
i=1 Ei.

Lemma 3.1. Let A be any query strategy, and let p be
the maximum ply, over relabeling of entities with identical
projected uncertainty regions, achieved by executing A on E.
If κ > 8d+1 then p > κd/(d+1)∆/8.

Proof: Let ai and bi be the number of queries to distinct
entities in the set Ei upto and after time τ/2, respectively,
made by a query strategy. Since the projected uncertainty
regions associated with entities in set Ei are initially identi-
cal, we can force, by suitable relabeling of entities, the first
m queries made to distinct entities in Ei to be to special
entities. The final ply obtained by the strategy for set Ei is

at least

κ∆− ((ai −̇m) + bi),

where x −̇ y ≡ max{x − y, 0}, since any query made to a
special trajectory before time τ/2 does not help to reduce
the final ply at the “leftmost” point of Ri. Then

s∑
i=1

κ∆− ((ai −̇m) + bi) ≤ ps.

This inequality is equivalent to

s∑
i=1

(ai −̇m) ≥ n−
s∑
i=1

bi − ps. (1)

The number of sets with ai ≥ m is at least the number of
sets with bi ≤ κ∆−p−m, otherwise the number of unqueried
entities in a set exceeds the final ply p. Since the number
of sets with bi > κ∆ − p − m is less than τ

2(κ∆−p−m)
, the

number of sets with ai ≥ m is greater than

s− τ

2(κ∆− p−m)
.

Thus,

s∑
i=1

(ai −̇m) <

s∑
i=1

ai −m
(
s− τ

2(κ∆− p−m)

)
. (2)

Since
∑s
i=1(ai + bi) ≤ τ , equations (1) and (2) together

imply,

ps > n− τ +m

(
s− τ

2(κ∆− p−m)

)
.

Since s = n/(κ∆) and τ = n(1 + 1/α), this is the same as

p

κ∆
> − 1

α
+m

(
1

κ∆
− 1 + 1/α

2(κ∆− p−m)

)
which, after substantial rearranging, is the same as

p(1− 1/α)− p2

κ∆
> −κ∆

α
+
m

2
(1 + 1/α)− m2

κ∆
.

This implies

p > −κ∆

α
+
m

2
− m2

κ∆
.

Since m = ∆(κ/2)d/(d+1) and α ≥ 16κ1/(d+1),

p > −κ
d

d+1

16
∆ +

(κ
2

) d
d+1 ∆

2
−
(κ

2

) d−1
d+1 ∆

2
,

which is the same as,

p >
κd/(d+1)∆

8

(
−1

2
+

4

2d/(d+1)
− 4

κ1/(d+1)2(d−1)/(d+1)

)
,

and so p > κd/(d+1)∆/8 if κ > 8d+1.
We conclude:

Theorem 3.2. There exists a set of n entities that have
intrinsic ply ∆ at time t∗ = t0 + τ with uncertainty regions
at time t∗ of diameter ` + τ such that any query strategy
can be forced, by relabeling of entities with identical projected

uncertainty regions, to achieve final ply (where λ =
(
`+τ
τ

)d
):

Ω(1)∆, if τ ≥ 2n,

Ω(min{n/∆, λ, αd+1}d/(d+1))∆, if τ = n+ n/α and

1 < α ≤ n,

Ω(min{n/∆, λ}d/(d+1))∆, otherwise (i.e. if τ ≤ n).

4. HARDNESS OF THE SINGLE SHOT
PROBLEM

In this section, we show that it is NP-hard to compute
the intrinsic ply of a collection of entities at a fixed point
in time, even if the entities are 1-dimensional points, and
we know their trajectories in advance. We first show that
the following, simpler, problem is NP-hard. We refer to this
problem as Graceful Segment Cover.

Problem 4.1. Given a set X of n numbers (points in
R1), compute n disjoint intervals of lengths 1 to n, such
that the mid point of each interval is a point in X.

Figure 5 shows an instance of this problem. We now prove:

Theorem 4.2. The decision version of Graceful Seg-
ment Cover is NP-complete.

Proof: We give a reduction from CNF-SAT. That is, given
a CNF formula φ, we construct an instance of Graceful
Segment Cover that has a solution if and only if φ is sat-
isfiable. To avoid fractions, we build a Graceful Segment
Cover that is scaled by a factor of 2, that is, the intervals
have radii 1, .., n, and diameters/lengths 2, 4, 6, .., 2n. We re-
fer to the intervals by their radius, so interval i is the interval
of radius i.

The main idea in the reduction is to make gadgets that
force any solution to use the 3 or 4 smallest intervals left
available. That is, the first gadget we build consists of, say,
3 points, and can only be satisfied by mapping the intervals
1, 2 and 3 to those three points, in some permutation. Then
the next gadget might consists of 4 points and can only be
satisfied by using intervals 4 to 7. In general, we let Si be
the total number of intervals used by the first i gadgets, and
then the i+1th gadget will use intervals Si+1, Si+2, Si+3,
and possibly Si + 4. Since the Si part will be present in all
points of the i + 1th gadget, we can conceptually ignore it,
and we will build all gadgets using only intervals of radii 1,
2, 3, and possibly 4.

3

32 1

4

5

I
II
III
IV

(a) (b)

Figure 6: (a) A wall. (b) Half of a jump gadget.

Basic gadgets.
The first gadget we need is the wall gadget. It consists

of three consecutive points, with gaps of size 3 and 4. The
only way to satisfy this gadget is by mapping interval 2 to
the first point, interval 1 to the second point, and interval
3 to the third point. Figure 6(a) illustrates this. The wall
gadget can only be satisfied in one way, therefore, it creates
a fixed region in R that is filled, and needs to be avoided by
all other gadgets.

The second gadget we need is the jump gadget. It consists
of two pairs of consecutive points. In both pairs (p, q) the
distance (gap) between p and q is 5, but the pairs themselves
can be arbitrary far away from each other. There are several
ways to satisfy this gadget, but since 1 + 2 + 3 + 4 equals
the sum of the gaps (two times 5), any solution must use
intervals 1 to 4, and furthermore, intervals 1 and 4 must be
used together at one of the pairs, and 2 and 3 at the other
pair. Figure 6(b) illustrates this. Note that the intervals
used in one pair together use 10 space.

Composite gadgets.
Let φ be a CNF-SAT instance, consisting of V , a set of

variables; C, a set of clauses; and E ⊂ V ×C×{true, false},
a set of occurrences of variables in clauses, possibly negated.
We also call E the edges of the instance. We will create a
jump gadget for each element of E, and one more for each
variable of V . We construct variable and clause gadgets
on consecutive segments of R, which are separated by wall
gadgets. Hence, we use |V | + |E| jump gadgets and |V | +
|C|+ 1 wall gadgets in total.

Let v ∈ V be a variable of the SAT-instance, and suppose
there are k edges in E that use v. We start by making a gap
of length 10k+21 between two walls for the variable gadget.
Inside, we place a special jump gadget; one pair at distance
2 from the left wall and one pair at distance 2 from the right
wall. Then for each (v, ci, bi) ∈ E, we place one pair of the
jump gadget (the other pair will be in the clause gadget) at
distance 10i+ 2 from the left wall if b = true, or at distance
10i+ 4 if b = false. Figure 7(a) illustrates the construction.

There are k+2 half jump gadgets in the construction, each
of which will take up 10 space. The total space is 10k + 21,
which leaves one unit empty. The outer two jump gadgets
that are linked to each other ensure that we cannot build all
the way to the left and right wall simultaneously; therefore,
there are only two possible states that satisfy the variable
gadget: either the leftmost unit is empty or the rightmost
unit is empty. We use these to encode the states true and
false of the variable. Once this choice is made, the way to
fill in all the jump gadgets is fixed. Note that for each edge
(v, c, b), we use intervals 1 and 4 if the variable is set to true
and b = true or if the variable is set to false and b = false,
and intervals 2 and 3 otherwise.

Let c ∈ C be a clause of the SAT-instance, and suppose

5 7 7 10

4

5 7 7 10

5 3214
(a) (b)

Figure 5: (a) An example input for Graceful Segment Cover. (b) A possible solution. (The lengths of the
intervals and gaps are scaled by a factor 2 to avoid fractions; e.g. the blue interval labeled ‘4’ has length 8; 4
on each side of the point.)

5

true
false

2 5 5 7 5 3 5 7 5 2

satisfied
not satisfied

5 7 5 35 73

(a) (b)

Figure 7: (a) A variable. The first and last (yellow) jumpers are linked to each other to ensure there are only
two possible states. Green jumpers correspond to positive literals of the variable, and are linked to clauses
where the variable appears positively. Red jumpers correspond to negative literals, and link to clauses where
the variable appears negatively. (b) A clause.

there are k edges in E that use c. We make a gap of length
12k − 1 between two walls for the clause gadget. Inside, we
place the k half jump gadgets, each gadget i at distance 12i−
9 from the left wall. Figure 7(b) illustrates the construction.
Recall that each jump gadget in a variable uses intervals 1
and 4 if its sign matches the state of the variable, and 2
and 3 otherwise. This means that the other halves of the
gadget, in the clause, must use intervals 2 and 3 if the literal
is true, and 1 and 4 if it is false. If all literals in the clause
are not satisfied, then there is no solution, since somewhere
two intervals 4 would need to overlap. If at least one of the
literals is true, then there is enough space for any assignment
of the other literals.

Finally, to complete the proof, we need to consider the
actual lengths again, including the Si factors that we ignored
so far. Recall we used 2|V | + |C| + |E| + 1 gadgets. We
order and number them arbitrarily. Now, for any gap in the
construction between two points belonging to gadgets i and
j, we increase the gap size by Si + Sj .

Now, we can prove hardness of the original problem.

Theorem 4.3. Let E be a set of n entities, let F be their
associated trajectories, and let t be a timestamp. Computing
the intrinsic ply of E at time t is NP-hard.

Proof: We reduce from Graceful Segment Cover. Con-
sider an input set X of n points in R. Now simply place an
entity on position x for every input number x in X, and keep
the entities at their starting position. An optimal solution
must query the entities in some order, and will result in a
set of intervals of lengths 1 to n. Since the entities are sta-
tionary, these intervals will be centered at the corresponding
points. To test whether a solution of ply 1 is possible it is
necessary to decide if there exists a placement of disjoint
intervals of lengths 1 to n, centered at the points in X. The
theorem follows.

5. A COMPETITIVE ALGORITHM
FOR THE RECURRENT PROBLEM

Recall that in the recurrent version of ply minimisation
the goal is to minimise the ply of the uncertainty regions
at regularly spaced checkpoints. As before, we will address

this in a competitive framework, by trying to minimise, at
every checkpoint, the competitive ratio of the ply attained
by our algorithm with the intrinsic ply of the trajectories
at that point. Since the intrinsic ply corresponds to the
minimum ply achievable at one single point in time by an
algorithm that has complete knowledge of the trajectories,
we are in effect contrasting the results achievable by our
algorithm with those achievable by a family of fully informed
algorithms designed to optimise the ply at each checkpoint
separately.

As it turns out a simple modification of our single shot
strategy works remarkably well: it isO(1)-competitive, when
the checkpoint spacing is any constant fraction of the num-
ber of entities. To be precise, suppose that we have n
entities and we want to minimise the ply of their associ-
ated uncertainty regions at regular checkpoints, spaced 2τ
time units apart. Our algorithm interleaves two processes,
RoundRobin and SingleShot, running in odd and even
time steps respectively.

RoundRobin: query all entities in a round-robin fashion.
SingleShot: after each checkpoint follow our general sin-

gle shot ply minimisation algorithm MinimisePly with the
goal of minimising the ply at the next checkpoint.

Since RoundRobin queries every entity once every 2n
time steps, we know that, after at most 2n time steps (or
right from the the start, if the initial uncertainty regions
are of size at most 2n), the diameter of all uncertainty
regions, projected to the next checkpoint, never exceeds
2(n+ τ). Furthermore, since SingleShot executes on even
time steps, its behaviour is indistinguishable from that of
algorithm MinimisePly, when entities are moving at two
times the normal speed. Thus, by Observation 2.11, we
know that a competitive ratio of O(min{n/∆, λ}d/(d+1)) is

always achievable, where λ1/dτ ≤ 2(n + τ), or equivalently
λ ≤ (2(n+ τ)/τ)d. We summarise this result in the follow-
ing:

Theorem 5.1. The interleaved RoundRobin–SingleShot
algorithm guarantees a ply at most a factor O((2k+2)d

2/(d+1))
larger than the intrinsic ply at all checkpoints, provided that
the checkpoint spacing τ satisfies τ ≥ n/k.

6. CONCLUDING REMARKS

We studied a new model for dealing with unpredictable
motion in which obtaining the location of a moving entity
costs a certain amount of time. We developed algorithms to
keep track of the positions of moving entities in this model by
minimising the ply of their uncertainty regions. We showed
that our algorithms are within a constant factor of the op-
timal solution.

Interesting directions for future work include extending
this work to deal with uncertainty in time (e.g. what if we
want to minimise the ply of the uncertainty regions at an
unknown time t∗ ∈ [t−, t+]), and to handle varying query
time costs. In particular, what happens if the time cost
of a query depends on the running time of the querying
algorithm. Another possible extension would be to allow
multiple queries to be executed simultaneously.

Acknowledgements
This work has been partially supported by the Netherlands
Organisation for Scientific Research (NWO) under grants
639.021.123 and 612.001.022, and by NSERC of Canada.

7. REFERENCES
[1] P. K. Agarwal, J. Erickson, and L. J. Guibas. Kinetic

BSPs for intersecting segments and disjoint triangles.
In Proc. 9th ACM-SIAM Symp. Discrete Algorithms,
pages 107–116, 1998.

[2] J. Almeida and R. Araujo. Tracking multiple moving
objects in a dynamic environment for autonomous
navigation. In Advanced Motion Control, 2008.
AMC’08. 10th IEEE International Workshop on,
pages 21–26, 2008.

[3] J. Basch, L. J. Guibas, C. Silverstein, and L. Zhang. A
practical evaluation of kinetic data structures. In Proc.
13th ACM Symp. Comput. Geom., pages 388–390,
1997.

[4] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman.
Efficient update strategies for geometric computing
with uncertainty. Theory of Computing Systems,
38(4):411–423, 2005.

[5] K. Buchin, M. Löffler, P. Morin, and W. Mulzer.
Delaunay triangulation of imprecise points simplified
and extended. Algorithmica, 61(3):674–693, 2011.

[6] M. Cho, D. M. Mount, and E. Park. Maintaining nets
and net trees under incremental motion. In Proc. 20th
International Symposium on Algorithms and
Computation, ISAAC ’09, pages 1134–1143. Springer,
2009.

[7] M. de Berg, M. Roeloffzen, and B. Speckmann.
Kinetic convex hulls and Delaunay triangulations in
the black-box model. In Proc. 27th ACM Symp. on
Comput. Geom., pages 244–253, 2011.

[8] S. B. Eisenman. People-centric mobile sensing
networks. PhD thesis, Columbia University, New York,
NY, USA, 2008.

[9] D. Eppstein, M. T. Goodrich, and M. Löffler. Tracking
moving objects with few handovers. In Proc. 12th
Algorithms and Data Structures Symposium, pages
362–373, 2011.

[10] P. G. Franciosa, C. Gaibisso, G. Gambosi, and
M. Talamo. A convex hull algorithm for points with

approximately known positions. International Journal
of Computational Geometry and Applications,
4(2):153–163, 1994.

[11] J. Gao, L. Guibas, and A. Nguyen. Deformable
spanners and their applications. Computational
Geometry: Theory and Applications, 35:2–19, 2006.

[12] L. Guibas, J. Hershberger, S. Suri, and L. Zhang.
Kinetic connectivity for unit disks. In Proc. 16th ACM
Symp. Comput. Geom., pages 331–340, 2000.

[13] L. J. Guibas. Kinetic data structures — a state of the
art report. In P. K. Agarwal, L. E. Kavraki, and
M. Mason, editors, Proc. Workshop Algorithmic
Found. Robot., pages 191–209. A. K. Peters, Wellesley,
MA, 1998.

[14] M. Hoffmann, T. Erlebach, D. Krizanc, M. Mihalák,
and R. Raman. Computing minimum spanning trees
with uncertainty. In STACS, pages 277–288, 2008.

[15] S. H. Kahan. Real-Time Processing of Moving Data.
PhD thesis, University of Washington, 1991.

[16] M. Löffler and M. van Kreveld. Largest and smallest
convex hulls for imprecise points. Algorithmica,
56(2):235–269, 2010.

[17] G. Miller, S. Teng, W. Thurston, and S. Vavasis.
Separators for sphere-packings and nearest neighbor
graphs. Journal of the ACM, 44(1):1–29, 1992.

[18] D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu. A computational
framework for incremental motion. In Proc. 20th ACM
Symp. on Comput. Geom., pages 200–209, 2004.

[19] M. Schneider. Moving Objects in Databases and GIS:
State-of-the-Art and Open Problems. Research Trends
in Geographic Information Science, pages 169–187,
2009.

[20] K. Sreenath, F. L. Lewis, and D. O. Popa.
Simultaneous adaptive localization of a wireless sensor
network. SIGMOBILE Mob. Comput. Commun. Rev.,
11(2):14–28, 2007.

[21] K.-C. R. Tseng and D. G. Kirkpatrick. Input-thrifty
extrema testing. In ISAAC, pages 554–563, 2011.

[22] J. van den Berg and M. Overmars. Planning
time-minimal safe paths amidst unpredictably moving
obstacles. International Journal of Robotics Research,
27(11–12):1274–1294, 2008.

[23] K. Yi and Q. Zhang. Multi-dimensional online
tracking. In Proc. 20th ACM-SIAM Symposium on
Discrete Algorithms, pages 1098–1107. SIAM, 2009.

[24] C. Zhu, L. Shu, T. Hara, L. Wang, and S. Nishio.
Research issues on mobile sensor networks. In
Communications and Networking in China
(CHINACOM), 2010 5th International ICST
Conference on, pages 1–6. IEEE, 2010.

	Introduction
	Problem statement
	Overview of results

	Competitive Algorithms for the Single Shot Problem
	A competitive algorithm for 2n
	A competitive algorithm for = n
	A competitive algorithm for all cases

	A Lower Bound on the Competitive Ratio
	Hardness of the Single Shot Problem
	A Competitive Algorithm for the Recurrent Problem
	Concluding Remarks
	References

