
Trajectory Grouping Structure under Geodesic
Distance
Irina Kostitsyna1, Marc van Kreveld2, Maarten Löffler2,
Bettina Speckmann1, and Frank Staals2

1 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands, {i.kostitsyna|b.speckmann}@tue.nl

2 Department of Information and Computing Sciences, Utrecht University,
The Netherlands, {m.j.vankreveld|m.loffler|f.staals}@uu.nl

Abstract
In recent years trajectory data has become one of the main types of geographic data, and hence
algorithmic tools to handle large quantities of trajectories are essential. A single trajectory
is typically represented as a sequence of time-stamped points in the plane. In a collection of
trajectories one wants to detect maximal groups of moving entities and their behaviour (merges
and splits) over time. This information can be summarized in the trajectory grouping structure.

Significantly extending the work of Buchin et al. [WADS 2013] into a realistic setting, we show
that the trajectory grouping structure can be computed efficiently also if obstacles are present
and the distance between the entities is measured by geodesic distance. We bound the number
of critical events: times at which the distance between two subsets of moving entities is exactly
ε, where ε is the threshold distance that determines whether two entities are close enough to be
in one group. In case the n entities move in a simple polygon along trajectories with τ vertices
each we give an O(τn2) upper bound, which is tight in the worst case. In case of well-spaced
obstacles we give an O(τ(n2 + mλ4(n))) upper bound, where m is the total complexity of the
obstacles, and λs(n) denotes the maximum length of a Davenport-Schinzel sequence of n symbols
of order s. In case of general obstacles we give an O(τ min{n2 +m3λ4(n), n2m2}) upper bound.
Furthermore, for all cases we provide efficient algorithms to compute the critical events, which
in turn leads to efficient algorithms to compute the trajectory grouping structure.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases moving entities, trajectories, grouping, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.674

1 Introduction

Tracking moving entities like humans, vehicles and animals is becoming more and more
commonplace, with applications in security (what human movement is suspicious behavior?),
the social sciences (which people move together? what regions do they avoid?), biology (what
are migration routes and what are the stopping places?), and traffic analysis. Technology
like GPS, RFID, and video has led to large data sets with trajectories, representing the
movement of entities. At a similar pace, more and more algorithmic tools to analyze such
data are being developed within the areas of Geographic Information Science, data mining,
and computational geometry.

In most cases, each trajectory is represented by a sequence of time-stamped points in
the plane or in space. As such, trajectories can be seen as a form of time-series data with a
geometric component. Collections of trajectories can be processed for retrieving patterns like

© Irina Kostitsyna, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank Staals;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 674–687

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.674
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 675

clusters, flocks, leadership, encounter, and many more [1, 7, 10, 11, 12]. Trajectory data can
also be linked to the environment, available in other spatial data sets, to determine more
types of patterns [3, 4].

Recent research has gone beyond identifying flocks or moving clusters separately by mod-
elling all joint movements into the trajectory grouping structure [2]. This structure captures
the joining and splitting of groups of entities by employing methods from computational
topology, in particular, the Reeb graph [6]. Distances between moving entities are among the
main criteria to decide if entities belong to the same group (see below for a precise definition).
In this paper we significantly extend the trajectory grouping structure by incorporating
obstacles and measuring distances as geodesic distances. The geodesic distance between two
entities is the distance that needs to be traversed for one entity to reach the other entity.
This approach gives a more natural notion of groups because it separates entities moving
on opposite sides of obstacles like fences or water bodies. A threshold distance denoted
by ε determines whether two entities are close enough to be in the same group. Hence we
examine the number of times that a threshold distance occurs among n moving entities.
Only threshold distances between the closest two entities of different groups matters, so we
analyze the number of events of this type for various obstacle settings.

The combination of moving points and specific structures defined by these points has
been a topic of major interest in computational geometry; for example, one of the main
open problems in the area is the question “How many times can the Delaunay triangulation
change its combinatorial structure in the worst case, when n points move along straight lines
in the plane?” Other related research on movement in geometric algorithms concerns kinetic
data structures. To our knowledge, our paper is the first to combine continuously moving
points with geodesic distances in the plane. We expect that our analysis will be of interest
to other distance problems on moving points than the trajectory grouping structure. For
example, in a similarity measure for two trajectories that incorporates obstacles.

Terminology and notation. We are given a set X of n entities, each moving along a
piecewise linear trajectory with τ vertices, and a set of pairwise disjoint polygonal obstacles
O = {O1, ..,Oh}. Let m denote the total complexity of O.

We denote the position of entity a at time t by a(t). Let ‖pq‖ denote the Euclidean
distance between points p and q, and let ξab(t) = ‖a(t)b(t)‖ denote the (Euclidean) distance
between entities a and b at time t. A path P = p1, .., pk from p1 to pk is a polygonal line
with vertices p1, .., pk, and has length ς (P) =

∑k−1
i=1 ‖pipi+1‖. A path is obstacle-avoiding if

it is disjoint from the interior of all obstacles in O. A path between p and q is a geodesic,
denoted g(p, q), if it has minimum length among all obstacle-avoiding paths. We refer to the
length of g(p, q) as the geodesic distance between p and q. We denote the geodesic distance
between a and b at time t by ςab(t) = ς (g(a(t), b(t))).

To determine if a set of entities may form a group, we have to decide if they are close
together. Analogous to Buchin et al. [2] we model this by a spatial parameter ε. More
specifically, two entities a and b are directly connected at time t if they are within (geodesic)
distance ε from each other, that is, ςab(t) ≤ ε. A set of entities X ′ is ε-connected at time
t if for any pair a, b ∈ X ′ there is a sequence a = a0, a1, .., ak = b such that ai and ai+1
are directly connected. We refer to a time at which a and b become directly connected or
disconnected as an ε-event. At such a time the distance between a and b is exactly ε. If an
ε-event also connects or disconnects the maximal ε-connected set(s) containing a and b, it is
a critical event. A (maximal) ε-connected set of entities X ′ is a group if it is ε-connected at
any time t in a time interval of length at least δ, and it has at least a certain size.

SoCG’15

676 Trajectory Grouping Structure under Geodesic Distance

Table 1 The number of critical events (i.e. the size of R), and the time required to construct R.
Note that the input size is Θ(τn+m).

Lower bound Upper bound Algorithm

Simple
polygon Ω(τn2) O(τn2) O(τn2(log2 m+ logn) +m)

Well-spaced
obstacles Ω(τ(n2 + nm)) O(τ(n2 +mλ4(n))) O(τn2m logn)

General
obstacles

Ω(τ(n2 +
nmmin{n,m}))

O(τ min{n2 + m3λ4(n),
n2m2}) O(τn2m2 logn+m2 logm)

Trajectory grouping structure. Since the objective of our methods is to compute the
trajectory grouping structure as defined by Buchin et al. [2], we review their structure here.
It captures not just the groups, but also how and when they arise, merge, split, or stop to be
a group. Only maximal groups are considered, where groups can be maximal in size and in
duration.

The evolution of the maximal ε-connected sets as the entities move is directly represented
by a directed acyclic graph (DAG) R. Edges of the graph correspond to the maximal
ε-connected sets and the nodes correspond to structural changes, that is, critical events. For
example, a node may represent a critical event where two maximal ε-connected sets get close
enough to become one ε-connected set: the node will have in-degree 2 and out-degree 1 and
represents a join. This DAG R is a Reeb graph [6]. Each entity is associated with a directed
path in R in the natural way.

Groups are defined as above. We are interested only in maximal groups: a subset S for a
time interval I is a maximal group if (i) S is in an ε-connected subset during I, (ii) I has
length at least δ, (iii) S has at least the required size, (iv) no proper superset of S or proper
superinterval of I exists with the same properties. Maximal groups are associated with a
directed (sub)path in R in a natural way.

Buchin et al. [2] show that when there are no obstacles the maximum complexity of R is
Θ(τn2) in the worst case, and it can be computed in O(τn2 logn) time. Furthermore, there
are Θ(τn3) maximal groups in the worst case, and they can be reported in O(τn3 logn+N)
time, where N is the output size (which is O(τn4)).

Results and organization. We extend the results of Buchin et al. [2] to the case where the
entities move amidst obstacles, and we thus measure the distance between two entities a and
b by their geodesic distance ςab. Instead of having O(τn2) events that correspond to the
nodes in R, we can have more events, depending on the obstacles and their complexity.

We study three settings for the obstacles. In the simplest case, all entities move inside
a simple polygon with m vertices. In the most general case, obstacles can have any shape,
location, and complexity, but they are disjoint and have total complexity m. As an interme-
diate case we assume that the distance between any two non-adjacent obstacle edges is at
least ε. We say that the obstacles are well-spaced.

Our results on the number of critical events, and thus the size of the Reeb-graph, for
the three cases, are listed in Table 1. For the simple polygon case, which we treat in
Section 3, our bounds are tight. The upper bounds for the well-spaced obstacles case, and
the general obstacles case include a λ4(n) term, where λs(n) denotes the maximum length
of a Davenport-Schinzel sequence of order s with n symbols. Since λ4(n) is only slightly
superlinear, our bound for the well-spaced obstacles case is almost tight. We present these

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 677

results in Sections 4 and 5, respectively. For all cases we also bound the total number of
ε-events, and we show how to compute R efficiently. Omitted proofs can be found in the full
version.

Once we have the Reeb graph R describing connectivity events of the entities in X , we
can use the existing analysis by Buchin et al. [2] to bound the number of maximal groups as
well as their algorithm(s) to compute these groups. So the interesting part is in analyzing
the complexity of R and determining how to compute it.

2 Distance Functions

Let a and b be two entities, each moving along a straight line during interval I, and let p
be a fixed point in R2. During I the Euclidean distance ξap(t) between a and p is a convex
hyperbolic function in t that has the form

√
Q(t), for some quadratic function Q. The

Euclidean distance between a and b during I is a convex hyperbolic function of the same
form. Since ξap is convex, there are at most two times in I such that ξap(t) = ε. The same
applies for ξab.

The geodesic distance ςap(t) between a and p is a piecewise function. At times where
the geodesic g(a(t), p) consists of a single line segment, the geodesic distance is simply the
Euclidean distance. When the geodesic consists of more than one line segment we can
decompose it into two parts: a line segment g(a(t), u) = a(t)u, and a path g(u, p), where u is
the first obstacle vertex on g(a(t), p). Similarly, if the geodesic g(a(t), b(t)) between a and b
consists of more than one segment we can decompose it into three parts a(t)u, g(u, v), and vb(t)
(we may have u = v). It follows that each piece of ςap is convex and hyperbolic. The pieces of
ςab are convex as well, since they are of the form ξau(t) +C+ ξvb(t) =

√
Q1(t) +C+

√
Q2(t),

for some quadratic functions Q1 and Q2 and a constant C. Therefore, we again have that on
each piece there are at most two times where ςap(t) is exactly ε. The same applies for ςab(t).

We obtain the same results when a and b move on piecewise linear trajectories, rather
than lines. The functions then simply consist of more pieces.

I Lemma 1. Let F = f1, .., fn be a set of n piecewise (partial) functions, each function fi
consisting of τ pieces f1

i , .., f
τ
i , such that any two pieces fki and f `j intersect each other at

most s times. The lower envelope L of F has complexity O(τλs+2(n)).

Analogous to Lemma 1 we can show that the upper envelope of F has complexity
O(τλs+2(n)).

3 Simple Polygon

We first focus our attention on entities moving in a simply-connected polygonal domain.

3.1 Lower Bound
Buchin et al. [2] show that the number of critical events for n entities moving in R2 without
obstacles can be Ω(τn2). Clearly, this lower bound also holds for entities moving inside a
simple polygon.

3.2 Upper Bound
Let a and b be two entities, each moving along a line during interval I, and let ς(t) = ςab(t)
be the function describing the geodesic distance between a and b during interval I.

SoCG’15

678 Trajectory Grouping Structure under Geodesic Distance

u

gi

gi+1
ab

Figure 1 Geodesics gi (purple) and gi+1 differ by at most one vertex; the first vertex u on gi+1.

I Lemma 2. The function ς is convex.

Proof Sketch. Let [ti−1, ti] and [ti, ti+1] be two consecutive time intervals, corresponding to
pieces ς i and ς i+1 of ς . We now show that ς is convex on [ti−1, ti+1].

Let gi and gi+1 denote the geodesic shortest paths corresponding to ς i and ς i+1, respec-
tively. Geodesics gi and gi+1 differ by at most one vertex u (assuming general position of the
obstacle vertices), and this vertex occurs either at the beginning or the end of the geodesic.
Consider the case that u is the first vertex of gi+1, and u does not occur on gi. See Figure 1.
All other cases are symmetric. Let v be the second vertex of gi+1 (and thus the first vertex of
gi). We have ς i(t) = ‖a(t)v‖+ ς(v, b(t)) and ς i+1(t) = ‖a(t)u‖+ ‖uv‖+ ς(v, b(t)). It follows
that the individual pieces ς i and ς i+1 are (convex) hyperbolic functions, that ς i(ti) = ς i+1(ti),
and that for any time t ∈ [ti−1, ti+1], ς i+1(t) ≥ ς i(t). We use these properties to show that
for any three times s,m, t ∈ [ti−1, ti+1], with s ≤ m ≤ t, the point ς(m) lies below the line
segment (function) ς(s)ς(t), that is ς(m) ≤ ς(s)ς(t)(m). Since ς i and ς i+1 are convex, the
only interesting case is when s lies on ς i and t lies on ς i+1. We prove this by case distinction
on m. It follows that ς is convex on [ti−1, ti+1]. J

I Theorem 3. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. The number of ε-events is at most O(τn2).

Proof. Fix a pair of entities a and b. Both a and b move along trajectories with τ vertices.
So there are 2τ − 1 intervals during which both a and b move along a line. During each such
interval ςab is convex (Lemma 2). So there are at most two times in each interval at which
ςab(t) = ε. The lemma follows. J

3.3 Algorithm
Next, we describe how to compute all ε-events. The high level overview of our algorithm is
as follows. For each pair of entities a and b, we first find a time tmin such that the geodesic
distance ς(t) = ςab(t) between a and b is minimal. Clearly, if ς(tmin) > ε there is no time
at which a and b are at distance ε. Otherwise, we use the fact that ς is convex (Lemma 2).
This means that on I− = (−∞, tmin] it is monotonically decreasing, and on I+ = [tmin,∞) it
is monotonically increasing. Hence, there are at most two times t− and t+ such that ς(t) = ε,
and we have that t− ∈ I− and t+ ∈ I+. We now find t− and t+ using parametric search [13]:
t− (t+) is the smallest (largest) time in I− (I+) such that ς(t) ≤ ε. To actually find tmin,
we basically use the same approach. At tmin the derivative ς ′ of ς is zero. Since ς is convex,
its derivative is monotonically increasing. Therefore, we can find tmin using a parametric
search: tmin is the smallest time such that ς ′(t) ≥ 0.

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 679

Finding the times tmin, t−, and t+. We use parametric search [13] to find tmin, t−, and
t+. The global idea is as follows. For a more detailed description of parametric search and
its application to our problem we refer to the full version of this paper.

To find tmin we use P(t) = ς ′(t) ≥ 0 as predicate. To find t− and t+ we use P(t) ≤ ε,
and P(t) ≥ ε, respectively. In all these cases we need an algorithm A that can test P(t)
for a given time t. This means that we need an efficient algorithm to compute ς(t) and a
functional description of ς . To this end, we preprocess the input polygon for shortest path
queries. We triangulate the polygon in O(m) time [5], and build the data structure D of
Guibas and Hershberger [8]. This also takes O(m) time, and allows us to find the length
of the shortest path between two fixed points p and q in O(logm) time. In particular, this
means that for a given time t, we can compute ς(t) and ς ′(t) in O(logm) time.

A query, and thus our algorithm A, takes O(logm) time. It now immediately follows that
we can compute tmin, t−, and t+ in O(log2 m) time each. We obtain the following result.

I Lemma 4. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. We can compute all ε-events in O(τn2 log2 m+m) time,
where m is the number of vertices in the polygon.

To compute R we can now use the algorithm as described by Buchin et al. [2]. This
algorithm maintains the connected components in a dynamic graph G; at each ε-event we
insert or delete an edge in G. This takes O(logn) time per ε-event, and thus O(τn2 logn)
time in total [2, 14]. We conclude:

I Theorem 5. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. The Reeb graph R representing the movement of the entities
in X has size O(τn2) and can be computed in O(τn2(log2 m+ logn) +m) time, where m is
the number of vertices in the polygon.

4 Well-spaced Obstacles

Next, we consider the situation where the entities move in a domain with multiple polygonal
obstacles. We first assume that the obstacles are well-spaced, that is, the distance between
any pair of non-adjacent obstacle edges is at least ε.

4.1 Lower Bound
I Lemma 6. The total number of critical events for a set of n entities, each moving
amidst a set of well-spaced obstacles O along a piecewise linear trajectory with τ vertices, is
Ω(τ(n2 + nm)), where m is the total complexity of O.

Proof. We describe a construction in which the entities move along lines that yields Ω(nm)
critical events. We repeat this construction in Ω(τ) steps. Since we already have a Ω(τn2)
lower bound for entities moving in R2 without obstacles, the lemma then follows.

The construction that we use is sketched in Fig. 2. We have two horizontal lines `A
and `B that are within vertical distance ε of each other. Our obstacles essentially form a
wall separating the two lines that has Θ(m) openings. Each obstacle is triangular, and thus
well-spaced. Furthermore, the obstacles are at distance at least ε from each other, so O is
well-spaced. Our set of entities consists of two equal-sized subsets A and B. The entities
move in pairs; one entity a from A and one entity b from B. Throughout the movement they
maintain ax = bx, and stay far away from any other entities. It is easy to see that this yields
Ω(nm) critical events as desired. J

SoCG’15

680 Trajectory Grouping Structure under Geodesic Distance

ε
`A
`B

� ε

Figure 2 The lower bound construction for well spaced obstacles. The entities of a pair a, b are
within distance ε from each other when both move in a green interval.

4.2 Upper Bound
In this case our obstacles are well spaced, so if two entities are at geodesic distance ε the
geodesic consists of at most two line segments. We now start with some bounds on the total
number of ε-events.

I Observation 7. There are at most O(τn2) ε-events where the geodesic between the two
entities involved is a single line segment.

I Lemma 8. Let X be a set of n entities, each moving amidst a set of well-spaced obstacles
O along a piecewise linear trajectory with τ vertices. The number of ε-events is at most
O(τn2m), where m is the total complexity of O.

Proof. By Observation 7 there are only O(τn2) ε-events in which the geodesic is a single line
segment. We now bound the number of ε-events for which the geodesic contains an obstacle
vertex v by O(τn2). The lemma then follows. Fix two entities a and b. Each trajectory edge
intersects the ε-disk centered at v at most once. Hence, there are O(τ) time intervals during
which both a and b move along a line, and are within distance ε from v. Clearly, all ε-events
occur within one of these intervals. Since the obstacles are well spaced, the ε-disk contains
at most three edges: the two edges connected to v and at most one edge adjacent to both
these edges. It follows that the function ςab consists of at most O(1) pieces during such an
interval. Hence, there can be at most a constant number of ε-events per interval. J

v

ε
p

D

Figure 3 The ε-disk D (red)
centered at v subdivided into six
wedges. The distance between
any pair of points p and q in the
same wedge is at most ε.

Next, we show that the number of critical events can
only be O(τ(n2 +mλ4(n))). Clearly, the number of critical
events at which the geodesic is a single line segment is also at
most O(τn2) (Observation 7). We now bound the number of
critical events where two sets of entities become ε-connected
or ε-disconnected, and the geodesic between them consists of
two line segments, connected via an obstacle vertex v.

Let D be the disk of radius ε centered at v, and consider
a subdivision of D into six equal size sectors or wedges. See
Fig. 3. We make sure that the obstacle containing v intersects
at least two wedges. Let W be such a wedge. For any pair of
points p and q in W , the Euclidean distance between p and
q is at most ε. Let XW (t) ⊆ X denote the set of entities that
that lie in W at time t.

I Observation 9. At any time t, there is at most one maximal set of ε-connected entities G
that has entities in wedge W , that is, for which G ∩ XW (t) 6= ∅.

I Corollary 10. At any time t, there is at most one maximal set of ε-connected entities G
such that XW (t) ⊆ G.

When two maximal sets of ε-connected entities XR and XB become ε-connected or ε-
disconnected at time t via vertex v, then the entities r ∈ XR and b ∈ XB that form their

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 681

v

D

Figure 4 A set of entities on the left, and the corresponding sets of partial functions R (red) and
B (blue). Critical events correspond to intersections between the lower envelope of R and the upper
envelope of B.

closest pair must both lie in D at time t. More specifically, since the geodesic between r
and b uses vertex v, r and b must lie in different wedges. Let R and B denote the wedges
that contain r and b, respectively. We now show that the total number of critical events
involving entities in wedges R and B is O(τλ4(n)). By Corollary 10 it then follows that each
such event corresponds to exactly one pair of ε-connected sets. Since there are only 15 pairs
of wedges, there are also at most O(τλ4(n)) times when two maximal sets of ε-connected
entities are at distance exactly ε and are connected via vertex v.

I Lemma 11. The total number of critical events involving entities in wedges R and B is
O(τλ4(n)).

Proof. Given an entity a ∈ X we define two partial functions %a and βa as follows:

%a(t) =
{
ξav(t)− ε/2 if a ∈ XR(t)
⊥ otherwise,

βa(t) =
{
−ξav(t) + ε/2 if a ∈ XB(t)
⊥ otherwise,

where ⊥ denotes undefined. Furthermore, let R = {%r | r ∈ X} and B = {βb | b ∈ X}. See
Fig. 4. It now follows that for any two entities r ∈ XR(t) and b ∈ XB(t) the length of the
path from r via v to b is ε if and only if %r(t) = βb(t). Thus, the number of times entities in
R become ε-connected or ε-disconnected via vertex v is at most the number of intersection
points between the lower envelope of R and the upper envelope of B. Next, we show that
this number of intersection points is at most O(τλ4(n)).

Each trajectory consists of τ − 1 edges, each of which intersects wedge R in a single line
segment. Hence, for each entity a, the function %a is defined on at most τ − 1 maximal
contiguous intervals I1

a , .., I
τ−1
a . Thus, by Lemma 1 the lower envelope L of R has complexity

at most O(τλ4(n)). Similarly, the upper envelope U of B has complexity O(τλ4(n)). It
follows that there are also O(τλ4(n)) time intervals such that both L and U are represented
by a simple hyperbolic function. In each such interval L and U intersect each other at most
twice. Hence, the total number of intersection points is O(τλ4(n)). J

It now follows that the total number of critical events at which the geodesic contains an
obstacle vertex is O(mτλ4(n)). We conclude:

I Theorem 12. Let X be a set of n entities, each moving amidst a set of well-spaced obstacles
O along a piecewise linear trajectory with τ vertices. The number of critical events is at most
O(τ(n2 +mλ4(n))), where m is the total complexity of O.

SoCG’15

682 Trajectory Grouping Structure under Geodesic Distance

4.3 Algorithm
We now show how to compute the Reeb graph R in case the entities move among well-spaced
obstacles. At first glance, it seems that we can compute all critical events using the same
approach as used in the upper bound proof. Indeed, this allows us to find all times at
which critical events occur. However, to construct the Reeb graph we also need to know
the sets of entities involved at each critical event, e.g. we want to know that a set X ′ splits
into subsets R and B. Unfortunately, there does not seem to be an efficient, i.e. sub-linear,
way to obtain this information, nor can we easily maintain the ε-connected sets of entities
without considering all ε-events. It is easy to compute all ε-events in O(τn2m) time, using
the approach described in Lemma 8. Once we have computed all ε-events, we can construct
the Reeb graph using the same method described by Buchin et al. [2]. This takes O(logn)
time per ε-event. Thus, we conclude:

I Theorem 13. Let X be a set of n entities, each moving amidst a set of well-spaced
obstacles O along a piecewise linear trajectory with τ vertices. The Reeb graph R representing
the movement of the entities in X has size O(τ(n2 + mλ4(n))) and can be computed in
O(τn2m logn) time, where m is the total complexity of O.

5 General Obstacles

Finally, we study the most general case in which the entities move amidst multiple obstacles,
and there are no restrictions on the locations, shape, or size of the obstacles.

5.1 Lower Bound
I Lemma 14. The total number of critical events for a set of n entities, each moving
amidst a set of obstacles O along a piecewise linear trajectory with τ vertices, is Ω(τ(n2 +
nmmin{n,m})), where m is the total complexity of O.

Proof. We describe a construction in which the entities move along lines that yields Ω(nmk)
critical events, with k = min{n,m}. We again repeat this construction Ω(τ) times.

The basic idea is to create Ω(k) stationary entities, Ω(n) moving entities, and Ω(m)
“entrances” from which a moving entity can become connected with a stationary entity. Each
stationary entity is surrounded by an obstacle. The distance from such a stationary entity s
to an entrance leading to s, will be approximately ε. So an entity gets ε-connected with s
only if it is directly in front of the entrance. We make sure that each stationary entity is
reachable from all entrances. Hence, each time that one of the Ω(n) moving entities passes
an entrance it will generate Ω(k) critical events. Since all Ω(n) moving entities encounter all
Ω(m) entrances we get at least Ω(nmk) critical events as desired.

Let c be a point in the plane, let δ > 0 be a small value, and let P be a set of Ω(k) points
on the lower half of the circle with center c and radius ε/2 + δ. We place a large rectangular
obstacle O containing c and all points in P such that the (shortest) distance from c to the
top side h of O is smaller than ε/2− δ. See Fig. 5(a).

We now carve Ω(k +m) passages through O. The first k′ = Ω(k) connect c to each point
in P . The remaining m′ = Ω(m) connect c to the top side h of the obstacle O. The first k′
passages all have length exactly ε/2 + δ, and we make sure that the remaining m′ passages
all have length exactly ε/2− δ. We can do this with at most one bend in each passage. See
Fig. 5(a). The distance from any point in P to the top side of O, via any of the m′ passages,
is now ε, and the distance between any two points in P is strictly larger than ε.

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 683

ε
2 + δ ε

2 − δ
h

O

c

P

(a)

O

`

P

(b)

Figure 5 The lower bound construction for general obstacles. (a) Constructing the passages
through obstacle O. (b) The final construction.

We place a stationary entity on each point in P , and we let Ω(n) entities move from left to
right on a horizontal line ` containing h (we can move ` upwards a bit later to make sure the
entities do not intersect the obstacle). We make sure that at any time the distance between
two of these moving entities is larger than ε, so they are never in the same ε-connected set.
When an entity e arrives at an entrance, that is, an opening of one of the top passages, it
is at distance ε to the points in P . Hence, we have a critical event where e connects with
all entities at points in P . We can make sure that e generates an event with (the entity on)
each point in P by moving each point in P by a small unique amount towards c. Fig. 5(b)
shows the resulting construction. J

5.2 Upper Bound

We again start by bounding the total number of ε-events.

I Lemma 15. Let X be a set of n entities, each moving amidst a set of obstacles O along
a piecewise linear trajectory with τ vertices. The number of ε-events is at most O(τn2m2),
where m is the total complexity of O.

As in the case of well-spaced obstacles, ε-events are not necessarily critical events. We
now fix an obstacle vertex v, and show that there are at most O(τm2λ4(n)) critical events
involving v. To this end, we again decompose the (geodesic) ε-disk centered at v into regions
such that each region corresponds to at most one maximal set of ε-connected entities. Each
critical event involving v also involves two maximal ε-connected sets, and thus two regions
in this decomposition. We show that we have to consider only O(m) pairs of such regions,
and that for each pair there can be at most O(τmλ4(n)) critical events. Since we have
O(m) obstacle vertices this gives us a total bound of O(τm3λ4(n)). When m is at most
O(n2/λ4(n)), this is an improvement over the bound in Lemma 15. It follows that the total
number of critical events is thus at most O(τ min{n2 +m3λ4(n), n2m2}).

Let Dε denote the geodesic ε-disk centered at v, and let Dε/2 denote the geodesic (ε/2)-
disk centered at v. Clearly, the geodesic distance between any two points in Dε/2 is at most
ε, thus we observe:

I Observation 16. At any time t there is at most one maximal ε-connected set of entities
G such that GDε/2(t) 6= ∅, and thus XDε/2(t) ⊆ G.

SoCG’15

684 Trajectory Grouping Structure under Geodesic Distance

v

Dε/2

Dε

Figure 6 Subdivision Φ. The color of the edge indicates its type: the red edges originate from
shortest paths, the purple and blue edges from the shortest path map, the cyan edges from the
subdivision in “triangular sectors”, the light green edges guarantee that the maximum angle at the
routing point is at most π/12, and the pink edges guarantee monotonicity.

Let A = Dε \ Dε/2. We decompose A into O(m) regions such that for each region R we
have that (i) the geodesic distance between two points p, q ∈ R is at most ε, (ii) any two
points p, q ∈ R have the same (combinatorial) geodesic to v, and (iii) the boundary of R has
constant complexity.

Let Φ denote this decomposition of A. It follows that at any time, each region R in Φ
contains entities from at most one maximal ε-connected set G. That is, XR(t) ⊆ G. It is now
easy to see that any critical event involving v involves the maximal set of ε-connected entities
Gε/2 corresponding to Dε/2, and a maximal set of ε-connected entities GR corresponding to
a region R of Φ. Hence, there are only O(m) pairs of regions that can be associated with a
critical event involving v. We now show how to construct Φ, and how to bound the number
of events corresponding to a single pair of regions.

Obtaining subdivision Φ. Let Φ′ be the overlay of the shortest path map with root v
(restricted to Dε), and all shortest paths from v to obstacle vertices in Dε.

I Observation 17. Φ′ has complexity O(m).

The edges of Φ′ are either line segments or hyperbolic arcs [9]. Since Φ′ is a refinement of
the shortest path map, all points in a region R in Φ′ have the same geodesic g to v (except
for the starting edge). Hence, each region R is star-shaped, and has a vertex c that lies
inside the kernel. This vertex c is the second vertex on each geodesic g. We refer to c as the
routing point of R.

Next, we further subdivide each region R in Φ′. We add edges cu between the routing
point c and all boundary vertices u of R. Each region is now bounded by two line segments
cu and cw and a segment c̃w. The segment c̃w is either a line segment, or a hyperbolic

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 685

arc. We further add edges cz between c and points z on c̃w such that the angle at c is at
most θ = π/12. In case c̃w is a hyperbolic arc we make sure that the hyperbolic function
describing this arc is monotonic. To this end, we add at most one additional edge cz to the
point z on c̃w with maximum curvature. All these new edges are contained in R and do not
intersect each other. It follows that the total complexity, summed over all regions in the
subdivision, is still O(m). Let Φ denote the resulting subdivision, restricted to A. See Fig. 6.

I Lemma 18. Let R be a region in Φ. For any two points p, q ∈ R the Euclidean distance
‖pq‖ between p and q is at most ε

√
29/4− 4

√
3.

I Lemma 19. Let R be a region in Φ. For any two points p, q ∈ R the geodesic distance
ς (p, q) = ς (g(p, q)) between p and q is at most ε.

I Lemma 20. Subdivision Φ has complexity O(m) and each region R ∈ Φ has the following
properties:
(i) the geodesic distance between two points p, q ∈ R is at most ε,
(ii) any two points p, q ∈ R have the same geodesic to v (excluding the starting edge), and
(iii) the boundary of R has constant complexity.

Proof. Property (i) follows directly from Lemma 19, and Property (ii) follows from the fact
that Φ is a refinement of the shortest path map. Each region is bounded by three or four
segments, depending if the routing point c lies in A or not. If c ∈ A, region R is bounded by
three segments. Otherwise, R is bounded by three segments and a part of Dε/2. However, as
all shortest paths from points in R to v use point c, it follows that this part of Dε/2 is also a
single hyperbolic segment. This proves Property (iii). J

Bounding the number of critical events for a pair of regions. Next, we fix a region R

in Φ, and show that the number of critical events involving v, R, and Dε/2, is at most
O(τλ4(n)).

I Lemma 21. Let R be any region of Φ, and let GR be the maximal set of ε-connected
entities corresponding to R. The (geodesic) distance between GR and v is given by a piecewise
hyperbolic function with O(τλ4(n)) pieces.

Proof. The boundary of R has constant complexity, so each entity in GR intersects region
R in O(τ) time-intervals. Furthermore, all points in R have the same combinatorial geodesic,
so during any such an interval, the distance to v is given by a simple hyperbolic function.
Thus, the distance function between GR and v corresponds to the lower envelope of a set of
hyperbolic functions. Lemma 1 now completes the proof. J

Fix a region R, let

βa(t) =
{
−ς(a(t), v) + ε if a(t) ∈ R
⊥ otherwise,

and let U be the upper envelope of {βa(t) | a ∈ X}. It follows from Lemma 21 that U has
complexity O(τλ4(n)).

Now consider the entities in the inner region Dε/2. The function ςav expressing the
geodesic distance between a and v is piecewise hyperbolic and consists of O(mτ) pieces. Let
L denote the lower envelope of all functions %a, a ∈ X , where %a(t) = ςav(t) if ςav(t) ≤ ε/2
and ⊥ otherwise. It follows from Lemma 1 that L has complexity O(mτλ4(n)).

SoCG’15

686 Trajectory Grouping Structure under Geodesic Distance

As with the well-spaced obstacles, all critical events in which the entities involved lie in
Dε/2 and R at the time of the event correspond to intersections of L and U . To bound the
number of intersections, and thus the number of critical events, we now (again) partition the
domain of L and U (i.e., time) into sets D1, .., Dk such that in each Di the lower envelope L
and the upper envelope U intersect at most twice. It is easy to partition the domain into
k = O(|L|+ |U|) = O(τλ4(n) +mτλ4(n)) = O(mτλ4(n)) intervals with this property. Hence,
we get O(mτλ4(n)) critical events involving vertex v and the pair of regions (R,Dε/2). This
gives a total of O(m3τλ4(n)) critical events. Together with the bound on the number of
ε-events (Lemma 15) this gives us the following result:

I Theorem 22. Let X be a set of n entities, each moving amidst a set of obstacles O

along a piecewise linear trajectory with τ vertices. The number of critical events is at most
O(τ min{n2 +m3λ4(n), n2m2}), where m is the total complexity of O.

5.3 Algorithm
We again explicitly compute all ε-events in order to construct the Reeb graph R. We follow
the approach from Lemma 15. That is, we compute the shortest path map Ψ with root v, and
for each pair of entities a and b we trace their trajectories through Ψ. For each of the O(τm)
pairs of regions visited, we construct ςab and find the ε-events. Computing the shortest
path map with root v takes O(m logm) time [9]. Tracing the trajectories and computing the
distance functions takes time proportional to the number of regions visited. Hence, we spend
O(τm) time for each pair. It follows that the total time required to compute all ε-events is
O(m(m logm+ n2τm)) = O(τn2m2 +m2 logm). Computing R again takes O(logn) time
per ε-event. We obtain the following result.

I Theorem 23. Let X be a set of n entities, each moving amidst a set of obstacles O

along a piecewise linear trajectory with τ vertices. The Reeb graph R representing the
movement of the entities in X has size O(τ min{n2 +m3λ4(n), n2m2}) and can be computed
in O(τn2m2 logn+m2 logm) time, where m is the total complexity of O.

6 Concluding Remarks

We study the trajectory grouping structure for entities moving amidst obstacles. To this end,
we analyze the number of times when two sets of entities are at distance ε from each other.
Our results for various types of obstacles can be found in Table 1. These bounds on the
number of critical events also give a bound on the size of the Reeb graph R. This in turn
gives bounds on the number of maximal groups: if the Reeb graph has size O(|R|) there are
O(|R|n) maximal groups [2]. Furthermore, we present efficient algorithms to compute R,
which leads to efficient algorithms to compute the grouping structure.

One intruiging open question is whether the Reeb graph can be constructed using only
the critical events, that is, in an output-sensitive manner. The difficulty with the approach as
described in [2] appears to be that one would need a dynamic data structure for maintaining
a subdivision of a set (the groups), that supports efficient split and merge operations. Thus,
there may be fundamental graph-theoretical obstacles to this approach. However, it is not
clear that this is the only possible approach to compute R.

An other direction of future work is to extend the grouping structure for entities moving
in more realistic environments, for instance modeled by weighted regions. This starts with
interesting modeling questions since distances are related to the speed of the entities. For
example: should the distance for two entities, say sheep, to be directly connected be larger on

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 687

a muddy field than it is on a concrete courtyard, or do the sheep need to be closer together
in the field to be considered a group?

Although we developed the technical machinery in this paper with the goal of extending
the trajectory grouping structure, we foresee wider applications for our techniques. We
believe our work will serve as a starting point for more general research related to moving
entities and geodesic distances. For example, we can consider trajectory similarity measures
in the presence of obstacles.

Acknowledgments. M.L., F. S., I. K., and B. S. are supported by the Netherlands Organi-
sation for Scientific Research (NWO) under grants 639.021.123, 612.001.022, 612.001.106,
and 639.023.208 respectively.

References
1 Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting

flock patterns. Computational Geometry, 41(3):111 – 125, 2008.
2 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.

Trajectory grouping structure. In Proc. 2013 WADS Algorithms and Data Structures Sym-
posium, LNCS, pages 219–230. Springer, 2013.

3 Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Context-aware similarity of tra-
jectories. In Geographic Information Science, volume 7478 of LNCS, pages 43–56. Springer,
2012.

4 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Symposium on Computational Geometry, page 367. ACM,
2014.

5 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6(5):485–524, 1991.

6 Herbert Edelsbrunner and John L. Harer. Computational Topology – an introduction. Amer-
ican Mathematical Society, 2010.

7 Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks in tra-
jectory data. In Proc. 14th ACM International Symposium on Advances in Geographic
Information Systems, GIS ’06, pages 35–42. ACM, 2006.

8 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126 – 152, 1989.

9 John Hershberger and Subhash Suri. An Optimal Algorithm for Euclidean Shortest Paths
in the Plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

10 Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen.
Discovery of convoys in trajectory databases. PVLDB, 1:1068–1080, 2008.

11 Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. In Advances in Spatial and Temporal Databases, volume 3633 of
LNCS, pages 364–381. Springer, 2005.

12 Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO – detecting relative
motion patterns in geospatial lifelines. In Developments in Spatial Data Handling, pages
201–215. Springer, 2005.

13 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. J. ACM, 30(4):852–865, 1983.

14 Salman Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. In Proc.
28th ACM Symposium on Computational Geometry, pages 269–276, 2012.

SoCG’15

	Introduction
	Distance Functions
	Simple Polygon
	Lower Bound
	Upper Bound
	Algorithm

	Well-spaced Obstacles
	Lower Bound
	Upper Bound
	Algorithm

	General Obstacles
	Lower Bound
	Upper Bound
	Algorithm

	Concluding Remarks

