Trajectory Grouping Structure under Geodesic Distance

Find all maximal groups: sets of entities that travel together during a time interval of length at least δ

C 3

a and *b* ε -connected iff $\exists \text{ path } a = p_1, ..., p_k = b \text{ s.t. } ||p_i p_{i+1}|| \le \varepsilon$

a and *b* ε -connected iff $\exists \text{ path } a = p_1, ..., p_k = b \text{ s.t. } ||p_i p_{i+1}|| \le \varepsilon$

a and *b* ε -connected iff $\exists \text{ path } a = p_1, ..., p_k = b \text{ s.t. } ||p_i p_{i+1}|| \le \varepsilon$

F-B

 $a \text{ and } b \in \text{-connected iff}$ $\exists \text{ path } a = p_1, ..., p_k = b \text{ s.t. } ||p_i p_{i+1}|| \leq \varepsilon$

Results on:

- # maximal groups
- How to compute them

a and *b* ε -connected iff $\exists \text{ path } a = p_1, ..., p_k = b \text{ s.t. } ||p_i p_{i+1}|| \le \varepsilon$

Results on:

- # maximal groups
- How to compute them

 $< \varepsilon$

a and *b* ε -connected iff \exists path $a = p_1, ..., p_k = b$ s.t. $\varsigma(p_i, p_{i+1}) \leq \varepsilon$

1) Compute when and how the partition into ε -connected sets changes

1) Compute when and how the partition into ε -connected sets changes

1) Compute when and how the partition into ε -connected sets changes

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

a) When are two ε -connected sets at (geodesic) distance exactly ε ?

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

a) When are two ε -connected sets at (geodesic) distance exactly ε ?

b) How many such critical events are there?

Results

Bounds on the number of critical events:

times at which two maximal sets of ε -connected entities are at geodesic distance ε

m = # obstacle vertices

 $\lambda_4(n) = \max$ length of a Davenport-Schinzel sequence of order 4 on *n* symbols.

Results

Bounds on the number of critical events:

times at which two maximal sets of ε -connected entities are at geodesic distance ε

- $\tau=\#$ vertices in each trajectory
- m = # obstacle vertices

 $\lambda_4(n) = \max$ length of a Davenport-Schinzel sequence of order 4 on *n* symbols.

The obstacles are well-spaced

 \iff

The distance between any pair of non-adjacent edges is $\geq \varepsilon$

Two types of critical events:

- 1) no vertices on geodesic
- 2) geodesic via obstacle vertex

Two types of critical events:

- 1) no vertices on geodesic
- 2) geodesic via obstacle vertex

Consider a critical event between sets R and B s.t. v on geodesic

Consider a critical event between sets R and B s.t. v on geodesic \implies closest pair $r \in R$ and $b \in B$ in $\mathcal{D}_{\varepsilon}$

Consider a critical event between sets R and B s.t. v on geodesic

 \implies closest pair $r \in R$ and $b \in B$ in $\mathcal{D}_{\varepsilon}$

 $\implies r \in R \ (b \in B)$ is the point from $R \ (B)$ closest to v.

Partition $\mathcal{D}_{\varepsilon}$ into 6 regions $W_1, ..., W_6$ s.t. $\forall p, q \in W_i$, $\|pq\| \leq \varepsilon$

Partition $\mathcal{D}_{\varepsilon}$ into 6 regions $W_1, ..., W_6$ s.t. $\forall p, q \in W_i$, $\|pq\| \leq \varepsilon$

At any time there is at most one ε -connected set interseting a region W_i

 \implies At any time, W_i corresponds to at most one ε -connected set

Fix two regions W_R and W_B , count #critical events via v between the ε -connected sets of W_R and W_B .

Fix two regions W_R and W_B , count #critical events via v between the ε -connected sets of W_R and W_B . Critical event $\implies \|bv\| + \|rv\| = \varepsilon$ where $b \in B$ $(r \in R)$ is the point from B (R) closest to v.

Upperbound for General Obstacles

Fix two regions W_R and W_B , count #critical events via v between the ε -connected sets of W_R and W_B .

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

- $\pi = \#$ vertices in each
- au = # vertices in each trajectory
- m = # obstacle vertices

 $\lambda_4(n) = \max$ length of a Davenport-Schinzel sequence of order 4 on *n* symbols.

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

Compute all critical events t

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R} <u>Compute all critical events</u> (t, R, B)

distance to v W_B W_R distance to v

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

a) Compute all ε -events: times s.t. $\varsigma(a, b) = \varepsilon$

b) Maintain dynamic connectivity graph $G = (\mathcal{X}, \{(a, b) \mid \varsigma(a, b) \leq \varepsilon\})$

distance to v W_B

1) Compute when and how the partition into ε -connected sets changes \implies Construct the Reeb graph \mathcal{R}

ε -events is $\Theta(\tau n^2 m)$

Future work

1) Compute \mathcal{R} output sensitively

2) Improve upper bound general obstacles we believe $O(\tau(n^2 + m^2\lambda_4(n)))$ should be possible

- au = # vertices in each trajectory
- m = # obstacle vertices

 $\lambda_4(n) = \max$ length of a Davenport-Schinzel sequence of order 4 on *n* symbols.

Future work

1) Compute \mathcal{R} output sensitively 2) Improve upper bound general obstacles we believe $O(\tau(n^2 + m^2\lambda_4(n))$ should be possible

