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Find all maximal groups: sets of entities that travel together
during a time interval of length at least δ
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time:

a and b ε-connected iff
∃ path a = p1, .., pk = b s.t. ς(pi, pi+1) ≤ ε
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2) Compute the groups: which sets stay together long enough
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Trajectory Grouping Structure
1) Compute when and how the partition into ε-connected sets changes

=⇒ Construct the Reeb graph R
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a) When are two ε-connected sets at (geodesic) distance exactly ε?
b) How many such critical events are there?



Lower bound Upper bound Algorithm

No obstacles Ω(τn2) O(τn2) O(τn2 logn)

Simple
polygon Ω(τn2) O(τn2) O(τn2(log2m+logn)+m)

Well-spaced
obstacles Ω(τ(n2 + nm)) O(τ(n2 +mλ4(n))) O(τn2m logn)

General
obstacles

Ω(τ(n2 +
nmmin{n,m}))

O(τ min{n2 +m3λ4(n),
n2m2}) O(τn2m2 logn+m2 logm)

n =
τ =

m =

# entities
# vertices in each trajectory
# obstacle vertices

Results
Bounds on the number of critical events:

times at which two maximal sets of ε-connected entities are at
geodesic distance ε

λ4(n) = max length of a
Davenport-Schinzel sequence of
order 4 on n symbols.
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Upperbound for Well Spaced Obstacles
The obstacles are well-spaced

The distance between any pair of non-adjacent edges is ≥ ε

e

ε
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1) no vertices on geodesic
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2) geodesic via obstacle vertex
1) no vertices on geodesic

Θ(τn2)

O(τλ4(n)) per vertex

O(τ(n2 +mλ4(n)))
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Consider a critical event between sets R and B s.t. v on geodesic
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ε

=⇒ closest pair r ∈ R and b ∈ B in Dε

Consider a critical event between sets R and B s.t. v on geodesic

Dε

b

r

=⇒ r ∈ R (b ∈ B) is the point from R (B) closest to v.

v
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ε

p

Partition Dε into 6 regions W1, ..,W6 s.t. ∀p, q ∈Wi, ‖pq‖ ≤ ε
At any time there is at most one ε-connected set interseting a region Wi

=⇒ At any time, Wi corresponds to at most one ε-connected set

v
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Fix two regions WR and WB , count #critical events via v between the
ε-connected sets of WR and WB .

v



Upperbound for Well Spaced Obstacles

where b ∈ B (r ∈ R) is the point from B (R) closest to v.

Fix two regions WR and WB , count #critical events via v between the
ε-connected sets of WR and WB .

v

Critical event =⇒ ‖bv‖+ ‖rv‖ = ε
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Upperbound for Well Spaced Obstacles
Fix two regions WR and WB , count #critical events via v between the
ε-connected sets of WR and WB .

distance to v
WB

distance to v

WR

Critical event =⇒ intersection between upper and lower envelope
There are at most O(τλ4(n)) such intersections.



Upperbound for General Obstacles
Fix two regions WR and WB , count #critical events via v between the
ε-connected sets of WR and WB .

WR

Dε

WBv
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Compute all critical events

distance to v
WB

distance to v

WR

=⇒ Construct the Reeb graph R
(t, R,B)

1) Compute when and how the partition into ε-connected sets changes



Algorithm Well-Spaced Obstacles

distance to v
WB

distance to v

WR

=⇒ Construct the Reeb graph R
1) Compute when and how the partition into ε-connected sets changes

a) Compute all ε-events: times s.t. ς(a, b) = ε
b) Maintain dynamic connectivity graph G = (X , {(a, b) | ς(a, b) ≤ ε})



Algorithm Well-Spaced Obstacles

distance to v
WB

distance to v

WR

=⇒ Construct the Reeb graph R
1) Compute when and how the partition into ε-connected sets changes

#ε-events is Θ(τn2m)
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