Trajectory Grouping Structure under Geodesic Distance

为

Find all maximal groups: sets of entities that travel together during a time interval of length at least δ

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected time: during a time interval of length at least δ

```
a and b \varepsilon-connected iff
\exists path }a=\mp@subsup{p}{1}{},..,\mp@subsup{p}{k}{}=b\mathrm{ s.t. |pipi+1 | 
```

Find all maximal groups: sets of entities that are ε-connected time: t_{1} during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected time: during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected time: during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected time: t_{4} during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

time:

Results on:

- \# maximal groups
- How to compute them

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

time:

Results on:

- \# maximal groups
- How to compute them

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

time:

$[0,1]$

$$
\begin{aligned}
& {[0,1]} \\
& {[0,1]} \\
& {[0,1]} \\
& {\left[t_{1}, t_{4}\right]}
\end{aligned}
$$

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\left\|p_{i} p_{i+1}\right\| \leq \varepsilon$

time:

Find all maximal groups: sets of entities that are ε-connected during a time interval of length at least δ
a and $b \varepsilon$-connected iff
\exists path $a=p_{1}, . ., p_{k}=b$ s.t. $\varsigma\left(p_{i}, p_{i+1}\right) \leq \varepsilon$

time:

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes
2) Compute the groups: which sets stay together long enough

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes
2) Compute the groups: which sets stay together long enough

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes
2) Compute the groups: which sets stay together long enough

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
2) Compute the groups: which sets stay together long enough

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
2) Compute the groups: which sets stay together long enough \Longrightarrow Compute groups from \mathcal{R}

\mathcal{R}

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
a) When are two ε-connected sets at (geodesic) distance exactly ε ?

Trajectory Grouping Structure

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
a) When are two ε-connected sets at (geodesic) distance exactly ε ?
b) How many such critical events are there?

Results

Bounds on the number of critical events:
 times at which two maximal sets of ε-connected entities are at geodesic distance ε

Results

Bounds on the number of critical events: times at which two maximal sets of ε-connected entities are at geodesic distance ε

Upperbound for Well Spaced Obstacles

The obstacles are well-spaced

The distance between any pair of non-adjacent edges is $\geq \varepsilon$

Upperbound for Well Spaced Obstacles

Two types of critical events:

1) no vertices on geodesic
2) geodesic via obstacle vertex

Upperbound for Well Spaced Obstacles

Two types of critical events:

1) no vertices on geodesic
2) geodesic via obstacle vertex

Upperbound for Well Spaced Obstacles

Consider a critical event between sets R and B s.t. v on geodesic

Upperbound for Well Spaced Obstacles

Consider a critical event between sets R and B s.t. v on geodesic \Longrightarrow closest pair $r \in R$ and $b \in B$ in $\mathcal{D}_{\varepsilon}$

Upperbound for Well Spaced Obstacles

Consider a critical event between sets R and B s.t. v on geodesic \Longrightarrow closest pair $r \in R$ and $b \in B$ in $\mathcal{D}_{\varepsilon}$
$\Longrightarrow r \in R(b \in B)$ is the point from $R(B)$ closest to v.

Upperbound for Well Spaced Obstacles

Partition $\mathcal{D}_{\varepsilon}$ into 6 regions $W_{1}, . ., W_{6}$ s.t. $\forall p, q \in W_{i},\|p q\| \leq \varepsilon$

Upperbound for Well Spaced Obstacles

Partition $\mathcal{D}_{\varepsilon}$ into 6 regions $W_{1}, . ., W_{6}$ s.t. $\forall p, q \in W_{i},\|p q\| \leq \varepsilon$ At any time there is at most one ε-connected set interseting a region W_{i}
\Longrightarrow At any time, W_{i} corresponds to at most one ε-connected set

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event $\Longrightarrow\|b v\|+\|r v\|=\varepsilon$ where $b \in B(r \in R)$ is the point from $B(R)$ closest to v.

Upperbound for Well Spaced Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Critical event \Longrightarrow intersection between upper and lower envelope There are at most $O\left(\tau \lambda_{4}(n)\right)$ such intersections.

Upperbound for General Obstacles

Fix two regions W_{R} and W_{B}, count \#critical events via v between the ε-connected sets of W_{R} and W_{B}.

Algorithm Well-Spaced Obstacles

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}

Algorithm Well-Spaced Obstacles

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
Compute all critical events t

Algorithm Well-Spaced Obstacles

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
Compute all critical events (t, R, B)

Algorithm Well-Spaced Obstacles

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}
a) Compute all ε-events: times s.t. $\varsigma(a, b)=\varepsilon$
b) Maintain dynamic connectivity graph $G=(\mathcal{X},\{(a, b) \mid \varsigma(a, b) \leq \varepsilon\})$

Algorithm Well-Spaced Obstacles

1) Compute when and how the partition into ε-connected sets changes \Longrightarrow Construct the Reeb graph \mathcal{R}

$$
\# \varepsilon \text {-events is } \Theta\left(\tau n^{2} m\right)
$$

Future work

1) Compute \mathcal{R} output sensitively
2) Improve upper bound general obstacles we believe $O\left(\tau\left(n^{2}+m^{2} \lambda_{4}(n)\right)\right.$ should be possible

Future work

1) Compute \mathcal{R} output sensitively
2) Improve upper bound general obstacles we believe $O\left(\tau\left(n^{2}+m^{2} \lambda_{4}(n)\right)\right.$ should be possible

