
Trajectory Grouping Structure?

Kevin Buchin1, Maike Buchin1, Marc van Kreveld2,
Bettina Speckmann1, and Frank Staals2

1 Dep. of Mathematics and Computer Science, TU Eindhoven
2 Dep. of Information and Computing Sciences, Utrecht University

Abstract. The collective motion of a set of moving entities like peo-
ple, birds, or other animals, is characterized by groups arising, merging,
splitting, and ending. Given the trajectories of these entities, we define
and model a structure that captures all of such changes using the Reeb
graph, a concept from topology. The trajectory grouping structure has
three natural parameters, namely group size, group duration, and entity
inter-distance. These parameters allow us to obtain detailed or global
views of the data. We prove complexity bounds on the maximum number
of maximal groups that can be present, and give algorithms to compute
the grouping structure efficiently. Furthermore, we showcase the results
of experiments using data generated by the NetLogo flocking model and
from the Starkey project. Although there is no ground truth for the
groups in this data, the experiments show that the trajectory group-
ing structure is plausible and has the desired effects when changing the
essential parameters. Our research provides the first complete study of
trajectory group evolvement, including combinatorial, algorithmic, and
experimental results.

1 Introduction

In recent years there has been an increase in location-aware devices and wireless
communication networks. This has led to a large amount of trajectory data cap-
turing the movement of animals, vehicles, and people. The increase in trajectory
data goes hand in hand with an increasing demand for techniques and tools to
analyze them, for example, in sports, ecology, transport, and social services.

An important task is the analysis of movement patterns. In particular, given
a set of moving entities we wish to determine when and which subsets of entities
travel together. When a sufficiently large set of entities travels together for a
sufficiently long time, we call such a set a group (we give a more formal definition
later). Groups may start, end, split and merge with other groups. Apart from
the question what the current groups are, we also want to know which splits and
merges led to the current groups, when they happened, and which groups they
involved. We wish to capture this group change information in a model that we
call the trajectory grouping structure.

? MB, BS & FS are supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 612.001.106, 639.022.707 & 612.001.022, respectively.

The informal definition above suggests that three parameters are needed to
define groups: (i) a spatial parameter for the distance between entities; (ii) a
temporal parameter for the duration of a group; (iii) a count for the number of
entities in a group. We will design our grouping structure definition to incor-
porate these parameters so that we can study grouping at different scales. We
use the three parameters as follows: a small spatial parameter implies we are
interested only in spatially close groups, a large temporal parameter implies we
are interested only in long-lasting groups, and a large count implies we are inter-
ested only in large groups. By adjusting the parameters suitably, we can obtain
more detailed or more generalized views of the trajectory grouping structure.

The use of scale parameters and the fact that the grouping structure changes
at discrete events suggest the use of computational topology [6]. In particular,
we use Reeb graphs to capture the grouping structure. Reeb graphs have been
used extensively in shape analysis and the visualization of scientific data (see
e.g. [2, 5, 8]). A Reeb graph captures the structure of a two- or higher-dimensional
scalar function, by considering the evolution of the connected components of the
level sets. The computation of Reeb graphs has received considerable attention
in computational geometry and topology; an overview is given in [4]. Recently,
a deterministic O(n log n) time algorithm was presented for constructing the
Reeb graph of a 2-skeleton of size n [16]. Edelsbrunner et al. [5] discuss time-
varying Reeb graphs for continuous space-time data. Although we also analyze
continuous space-time data (2D-space in our case), our Reeb graphs are not
time-varying, but time is the parameter that defines the Reeb graph.

Our research is motivated by and related to previous research on flocks [1,
9, 10, 19], herds [11], convoys [12], moving clusters [13], mobile groups [20] and
swarms [14]. These concepts differ from each other in the way in which space and
time are used to test if entities form a group: do the entities stay in a single disc
or are they density-connected [7], should they stay together during consecutive
time steps or not, can the group members change over time, etc. Only the herds
concept [11] includes the splitting and merging of groups.

Contributions. We present the first complete study of trajectory group evolve-
ment, including combinatorial, algorithmic, and experimental results. Our re-
search differs from and improves on previous research in the following ways.
Firstly, our model is simpler than herds and thus more intuitive. Secondly, we
consider the grouping structure at continuous times instead of at discrete steps
(which was done only for flocks). Thirdly, we analyze the algorithmic and com-
binatorial aspects of groups and their changes. Fourthly, we implemented our
algorithms and provide evidence that our model captures the grouping struc-
ture well and can be computed efficiently. We created videos based on our
implementation showing the maximal groups we found in simulated NetLogo
flocking data [21] and in real-world data from the Starkey project [15], see
www.staff.science.uu.nl/∼staal006/grouping.

A definition for a group. Let X be a set of entities of which we have locations
over time. The ε-disc of an entity x (at time t) is a disc of radius ε centered at x at
time t. Two entities are directly connected at time t if their ε-discs overlap. Two

entities x and y are ε-connected at time t if there is a sequence x = x0, .., xk = y
of entities such that for all i, xi and xi+1 are directly connected.

A subset S ⊆ X of entities is ε-connected at time t if all entities in S are
pairwise ε-connected at time t. This means that the union of the ε-discs of
entities in S forms a single connected region. The set S forms a component at
time t if and only if S is ε-connected, and S is maximal with respect to this
property. The set of components C(t) at time t forms a partition of the entities
in X at time t.

Let the spatial parameter of a group be ε, the temporal parameter δ, and
the size parameter m. A set G of k entities forms a group during time interval
I if and only if the following three conditions hold: (i) G contains at least m
entities, so k ≥ m, (ii) the interval I has length at least δ, and (iii) at all times
t ∈ I, there is a component C ∈ C(t) such that G ⊆ C.

x1

x2

x3

x4

x5

t0

t1 t2

t3x6
t4 t5

Fig. 1. For m = 2 and δ > t4 − t3 there
are four maximal groups: {x1, x2}, {x3, x4},
{x5, x6}, and {x1, .., x4}.

We denote the interval I =
[ts, te] of group G with IG. Group
H covers group G if G ⊆ H and
IG ⊆ IH . If there are no groups
that cover G, we say G is maximal
(on IG). In Fig. 1, groups {x1, x2},
G̃ = {x3, x4}, Ĝ = {x5, x6}, and G
= {x1, .., x4} are maximal: G̃ and
Ĝ on [t0, t5], G on [t1, t2]. Group
{x1, x3} is covered by G and hence
not maximal.

Note that entities can be in multiple maximal groups at the same time.
For example, entities {y1, y2, y3} can travel together for a while, then y4, y5
may become ε-connected, and shortly thereafter y1, y4, y5 separate and travel
together for a while. Then y1 may be in two otherwise disjoint maximal groups
for a short time. An entity can also be in two maximal groups where one is a
subset of the other. In that case the group with fewer entities must last longer.
That an entity is in more groups simultaneously may seem counterintuitive at
first, but it is necessary to capture all grouping information. We will show that
the total number of maximal groups is O(τn3), where n is the number of entities
in X and τ is the number of edges of each input trajectory. This bound is tight
in the worst case.

Our maximal group definition uses three parameters, which all allow a more
global view of the grouping structure. In particular, we observe that there is
monotonicity in the group size and the duration: If G is a group during interval
I, and we decrease the minimum required group size m or decrease the minimum
required duration δ, then G is still a group on time interval I. Also, if G is a
maximal group on I, then it is also a maximal group for a smaller m or smaller
δ. For the spatial parameter ε we observe monotonicity in a slightly different
manner: if G is a group for a given ε, then for a larger value of ε there exists a
group G′ ⊇ G. The monotonicity property is important when we want to have a

more detailed view of the data: we do not lose maximal groups in a more detailed
view. The group may however be extended in size and/or duration.

We capture the grouping structure using a Reeb graph of the ε-connected
components together with the set of all maximal groups. Parts of the Reeb graph
that do not support a maximal group can be omitted. The grouping structure
can help us in answering various questions. For example:

– What is the largest/longest maximal group at time t?
– How many entities are currently (not) in any maximal group?
– What is the first maximal group that starts/ends after time t?
– What is the total time that an entity was part of any maximal group?
– Which entity has shared maximal groups with the most other entities?

Furthermore, the grouping structure can be used to partition the trajectories in
independent data sets, to visualize grouping aspects of the trajectories, and to
compare grouping across different data sets.

Results and Organization. We discuss how to represent the grouping struc-
ture in Section 2, and prove that there are always O(τn3) maximal groups, which
is tight in the worst case. Here n is the number of trajectories (entities) and τ
the number of edges in each trajectory. We present an algorithm to compute the
trajectory grouping structure and all maximal groups in Section 3. This algo-
rithm runs in O(τn3 + N) time, where N is the total output size. In Section 4
we discuss robustness briefly; all details can be found in the full version of the
paper [3]. In Section 5 we evaluate our methods on synthetic and real-world
data.

2 Representing the Grouping Structure

Let X be a set of n entities, where each entity travels along a path of τ edges.
To compute the grouping structure we consider a manifold M in R3, where the
z-axis corresponds to time. The manifold M is the union of n “tubes”. Each
tube consists of τ skewed cylinders with horizontal radius ε that we obtain by
tracing the ε-disc of an entity x over its trajectory.

Let Ht denote the horizontal plane at height t, then the set M∩Ht is the
level set of t. The connected components in the level set of t correspond to the
components (maximal sets of ε-connected entities) at time t. We will assume
that all trajectories have their known positions at the same times t0, .., tτ and
that no three entities become ε-(dis)connected at the same time. Our theory does
not depend on these assumptions and we could remove them, but they make the
descriptions considerably more clear.

2.1 The Reeb graph

We start out with a possibly disconnected solid that is the union of a collection
of tube-like regions: a 3-manifold with boundary. Note that this manifold is
not explicitly defined. We are interested in horizontal cross-sections, and the

evolution of the connected components of these cross-sections defines the Reeb
graph. Note that this is different from the usual Reeb graph that is obtained from
the 2-manifold that is the boundary of our 3-manifold, using the level sets of the
height function (the function whose level sets we follow is the height function
above a horizontal plane below the manifold), see [6] for more on this topic.

To describe how the components change over time, we consider the Reeb
graph R of M. The Reeb graph has a vertex v at every time tv where the
components change. The vertex times are usually not at any of the given times
t0, .., tτ , but in between two consecutive time steps. The vertices of the Reeb
graph can be classified in four groups. There is a start vertex for every component
at t0 and an end vertex at tτ . A start vertex has in-degree zero and out-degree
one, and an end vertex has in-degree one and out-degree zero. The remaining
vertices are either merge vertices or split vertices. Since we assume that no
three entities become ε-(dis)connected at exactly the same time there are no
simultaneous splits and merges. This means merge vertices have in-degree two
and out-degree one, and split vertices have in-degree one and out-degree two. A
directed edge e = (u, v) connecting vertices u and v, with tu < tv, corresponds
to a set Ce of entities that form a component at any time t ∈ Ie = [tu, tv]. The
Reeb graph is this directed graph. Note that the Reeb graph depends on the
spatial parameter ε, but not on the other two parameters of maximal groups.

Theorem 1. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges.
These bounds are tight in the worst case.

Proof. Lemma 1 in the full paper [3] gives a simple construction that shows that
the Reeb graph may have Ω(τn2) vertices and edges in the worst case. For the
upper bound, consider a trajectory edge (vi, vi+1) of entity x ∈ X . An other
entity y ∈ X is directly connected to x during at most one interval I ⊆ [ti, ti+1].
This interval yields at most two vertices in R. The trajectory of x consists of τ
edges, hence a pair x, y produces O(τ) vertices in R. This gives a total of O(τn2)
vertices, each with constant degree, so there are O(τn2) edges. ut

The trajectories of entities are associated with the edges of the Reeb graph in a
natural way. Each entity follows a directed path in the Reeb graph from a start
vertex to an end vertex. Similarly, (maximal) groups follow a directed path from
a start or merge vertex to a split or end vertex. If m > 0 or δ > 0, there may be
edges in the Reeb graph with which no group is associated. These edges do not
contribute to the grouping structure, so we can discard them. The remainder of
the Reeb graph we call the reduced Reeb graph, which, together with all maximal
groups associated with its edges, forms the trajectory grouping structure.

2.2 Bounding the Number of Maximal Groups

To bound the total number of maximal groups, we study the case where m = 1
and δ = 0, because larger values can only reduce the number of maximal groups.
It may seem as if each vertex in the Reeb graph simply creates as many maximal

groups as it has outgoing edges. However, consider for example Fig. 2. Split
vertex v creates not only the maximal groups {1, 3, 5, 7} and {2, 4, 6, 8}, but also
{1, 3}, {5, 7}, {2, 4}, and {6, 8}. These last four groups are all maximal on [t2, t],
for t > t4.

t1t1t0 t2 t3 t4

{3}
{3, 4}

{1..4}
{1..8}

1
2
3
4
5
6
7
8

1, 3, 5, 7

2, 4, 6, 8v

{1, 3}, {1, 3, 5, 7}

Fig. 2. The maximal groups containing en-
tity 3 (green). Vertex v creates six new
groups, including {1, 3} and {1, 3, 5, 7}.

Notice that all six newly discov-
ered groups start strictly before tv,
but only at tv do we realize that
these groups are maximal, which
is the meaning that should be un-
derstood with “creating maximal
groups”. This example can be ex-
tended to arbitrary size. Hence a
vertex v may create many new max-
imal groups, some of which start
before tv. We can show that each
vertex creates at most n new maxi-
mal groups, which leads to a total of
O(τn3) maximal groups. The proof
of the following theorem is given in the full paper [3].

Theorem 2. Let X be a set of n entities, in which each entity travels along a
trajectory of τ edges. There are at most O(τn3) maximal groups, and this is tight
in the worst case.

3 Computing the Grouping Structure

To compute the grouping structure we need to compute the reduced Reeb graph
and the maximal groups. We now show how to do this efficiently. Removing the
edges of the Reeb graph that are not used is an easy post-processing step which
we do not discuss further.

3.1 Computing the Reeb graph

We can compute the Reeb graph R = (V,E) as follows. We first compute all
times where two entities x and y are at distance 2ε from each other. We dis-
tinguish two types of events, connect events at which x and y become directly
connected, and disconnect events at which x and y stop being directly connected.

We now process the events on increasing time while maintaining the current
components. We do this by maintaining a graph G = (X , Z) representing the
directly-connected relation, and the connected components in this graph. The set
of vertices in G is the set of entities. The graph G changes over time: at connect
events we insert new edges into G, and at disconnect events we remove edges.
At any given time t, G contains an edge (x, y) if and only if x and y are directly
connected at time t. Hence the components at t (the maximal sets of ε-connected
entities) correspond to the connected components in G at time t. Since we know

all times at which G changes in advance, we can use the same approach as in
[16] to maintain the connected components: we assign a weight to each edge in G
and we represent the connected components using a maximum weight spanning
forest. The weight of edge (x, y) is equal to the time at which we remove it from
G, that is, the time at which x and y become directly disconnected. We store the
maximum weight spanning forest F as an ST-tree [17], which allows connectivity
queries, inserts, and deletes, in O(log n) time.

We spend O(n2) time to initialize the graph G at t0 in a brute-force manner.
For each component we create a start vertex in R. We also initialize a one-to-one
mapping M from the current components in G to the corresponding vertices in
R. When we handle a connect event of entities x and y at time t, we query F
to get the components Cx and Cy containing x and y, respectively. Using M we
locate the corresponding vertices vx and vy in R. If Cx 6= Cy we create a new
merge vertex v in R with time tv = t, add edges (vx, v) and (vy, v) to R labeled
Cx and Cy, respectively. If Cx = Cy we do not change R. Finally, we add the
edge (x, y) to G (which may cause an update to F), and update M .

At a disconnect event we first query F to find the component C currently
containing x and y. Using M we locate the vertex u corresponding to C. Next,
we delete the edge (x, y) from G, and again query F . Let Cx and Cy denote the
components containing x and y, respectively. If Cx = Cy we are done, meaning
x and y are still ε-connected. Otherwise we add a new split vertex v to R with
time tv = t, and an edge e = (u, v) with Ce = C as its component. We update
M accordingly.

Finally, we add an end vertex v for each component C in F with tv = tτ . We
connect the vertex u = M(C) to v by an edge e = (u, v) and let Ce = C be its
component.

Analysis. We need O(τn2 log n) time to compute all O(τn2) events and sort
them according to increasing time. To handle an event we query F a constant
number of times, and we insert or delete an edge in F . These operations all take
O(log n) time. So the total time required for building R is O(τn2 log n).

Theorem 3. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges,
and can be computed in O(τn2 log n) time.

3.2 Computing the maximal groups

We now show how to compute all maximal groups using the Reeb graph R =
(V,E). We will ignore the requirements that each maximal group should contain
at least m entities and have a minimal duration of δ. That is, we assume m = 1
and δ = 0. It is easy to adapt the algorithm for larger values.

Labeling the edges. Our algorithm labels each edge e = (u, v) in the Reeb
graph with a set of maximal groups Ge. The groups G ∈ Ge are those groups
for which we have discovered that G is a maximal group at a time t ≤ tu. Each
maximal group G becomes maximal at a vertex, either because a merge vertex
created G as a new group that is maximal, or because G is now a maximal set

of entities that is still together after a split vertex. This means we can compute
all maximal groups as follows.

We traverse the set of vertices of R in topological order. For every vertex v
we compute the maximal groups on its outgoing edge(s) using the information
on its incoming edge(s).

If v is a start vertex it has one outgoing edge e = (v, u). We set Ge to {(Ce, tv)}
where tv = t0. If v is a merge vertex it has two incoming edges, e1 and e2. We
propagate the maximal groups from e1 and e2 on to the outgoing edge e, and
we discover (Ce, tv) as a new maximal group. Hence Ge = Ge1 ∪Ge2 ∪ {(Ce, tv)}.

v

Ce1

u

Ce2

s

e1

e e2

G1

G2
G3

G4

Fig. 3. After split vertex v, Ge1 contains
the groups Ce1 = G1 ∪ G2 (with start-
ing time ts), G1, and G2. Maximal groups
Ce2 = G3 ∪ G4 (with starting time tu),
G3, and G4 go to e2. The maximal groups
Ce and G1 ∪G2 ∪G3 end at v.

If v is a split vertex it has one
incoming edge e, and two outgoing
edges e1 and e2. A maximal group
G on e may end at v, continue on
e1 or e2, or spawn a new maximal
group G′ ⊂ G on either e1 or e2. In
particular, for any group G′ in Gei ,
there is a group G in Ge such that
G′ = G ∩ Ci 6= ∅. The starting time
of G′ is t′ = min{t | (G, t) ∈ Ge ∧
G′ ⊆ G}. Thus, t′ is the first time G′

was part of a maximal group on e.
Stated differently, t′ is the first time
G′ was in a component on a path to v. Fig. 3 illustrates this case. If v is an end
vertex it has no outgoing edges. So there is nothing to be done.

Storing the maximal groups. We need a way to store the maximal groups
Ge on an edge e = (u, v) in such a way that we can efficiently compute the set(s)
of maximal groups on the outgoing edge(s) of a vertex v. We now show that we
can use a tree Te to represent Ge, with which we can handle a merge vertex in
O(1) time, and a split vertex in O(k) time, where k is the number of entities
involved. The tree uses O(k) storage.

We say a group G is a subgroup of a group H if and only if G ⊆ H and
IH ⊆ IG. For example, in Fig. 1 {x1, x2} is a subgroup of {x1, .., x4}. Note that
both G and H could be maximal. The proof of the following lemma is given in
the full paper [3].

Lemma 1. Let e be an edge of R, and let S and T be maximal groups in Ge with
starting times tS and tT , respectively. There is also a maximal group G ⊇ S ∪T
on e with starting time tG ≥ max(tS , tT), and if S ∩ T 6= ∅ then S is a subgroup
of T or vice versa.

We represent the groups Ge on an edge e ∈ E by a tree Te. We call this the
grouping tree. Each node v ∈ Te represents a group Gv ∈ Ge. The children of a
node v are the largest subgroups of Gv. From Lemma 1 it follows that any two
children of v are disjoint. Hence an entity x ∈ Gv occurs in only one child of v.
Furthermore, note that the starting times are monotonically decreasing on the
path from the root to a leaf: smaller groups started earlier. A leaf corresponds to

a smallest maximal group on e: a singleton set with an entity x ∈ Ce. It follows
that Te has O(n) leaves, and therefore has size O(n). Note, however, that the
summed sizes of all maximal groups can be quadratic.

Analysis. We analyze the time required to label each edge e with a tree Te for
a given Reeb graph R = (V,E). Topologically sorting the vertices takes linear
time. So the running time is determined by the processing time in each vertex,
that is, computing the tree(s) Te on the outgoing edge(s) e of each vertex. Start,
end, and merge vertices can be handled in O(1) time: start and end vertices
are trivial, and at a merge vertex v the tree Te is simply a new root node with
time tv and as children the (roots of the) trees of the incoming edges. At a split
vertex we have to split the tree T = T(u,v) of the incoming edge (u, v) into two
trees for the outgoing edges of v. For this, we traverse T in a bottom-up fashion,
and for each node, check whether it induces a vertex in one or both of the trees
after splitting. This algorithm runs in O(|T |) time. Since |T | = O(n) the total
running time of our algorithm is O(n|V |) = O(τn3).

Reporting the groups. We can augment our algorithm to report all maximal
groups at split and end vertices. The main observation is that a maximal group
ending at a split vertex v, corresponds exactly to a node in the tree T(u,v) (before
the split) that has entities in leaves below it that separate at v. The procedures
for handling split and end vertices can easily be extended to report the maximal
groups of size at least m and duration at least δ by simply checking this for each
maximal group. Although the number of maximal groups is O(τn3) (Theorem 2),
the summed size of all maximal groups can be Θ(τn4). The running time of our
algorithm is O(τn3 +N), where N is the total output size.

Theorem 4. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, we can compute all maximal groups in O(τn3 + N) time,
where N is the output size.

4 Robustness

The grouping structure definition we have given and analyzed has a number of
good properties. It fulfills monotonicity, and in the previous sections we showed
that there are only polynomially many maximal groups, which can be computed
in polynomial time as well. In this section we study the property of robustness,
which our definition of grouping structure does not have yet. Intuitively, a robust
grouping structure ignores short interruptions of groups, as these interruptions
may be insignificant at the temporal scale at which we are studying the data.
For example, if we are interested in groups that have a duration of one hour or
more, we may want to consider interruptions of a minute or less insignificant.

We introduce a new temporal parameter α. Interruptions of duration at most
α may be ignored, and the precise moment of events is not relevant beyond a
value of α. We can incorporate α in our definition of the grouping structure and
obtain (details and proofs are in the full paper [3]):

ε = 10 ε = 20
δ = 2 δ = 5

m
=

2
m

=
3

m
=

5

δ = 2 δ = 5

Group size:

δ = 3.5 δ = 3.5

32 4 5 6 7 8

Fig. 4. The maximal groups for varying parameter values. The time associated with
each trajectory vertex is proportional to its x-coordinate.

Theorem 5. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, we can compute all robust maximal groups in O(τn3 log n+
N) time, where N is the output size.

5 Evaluation

To see if our model of the grouping structure is practical and indeed captures the
grouping behavior of entities we implemented and evaluated our algorithms. We
would like to visually inspect the maximal groups identified by our algorithm,
and compare this to our intuition of groups. In restricted cases we can show this
in a figure, see for example Fig. 4, but for a larger number of trajectories the
resulting figures become too cluttered to analyze. So instead we generated short
videos.1

We use two types of data sets to evaluate our method: a synthetic data set
generated using a slightly modified version of the NetLogo Flocking model [21],
and a real-world data set consisting of deer, elk, and cattle [15].

NetLogo. We generated several data sets using an adapted version of the Net-
Logo Flocking model [21]. In our adapted model the entities no longer wrap
around the world border, but instead start to turn when they approach the bor-
der. Furthermore, we allow small random direction changes for the entities. The
data set that we consider here contains 400 trajectories, each with 818 edges.
Our videos show all maximal groups for varying parameter values.

The videos show that our model indeed captures the crucial properties of
grouping behavior well. We observe that the choice of parameter values is im-
portant. In particular, if we make ε too large we see that the entities are loosely
coupled, and too many groups are found. Similarly, for large values of m virtually
no groups are found. However, for reasonable parameter settings, for example
ε = 5.25, m = 4, and δ = 100, we can clearly see that our algorithm identifies

1 See www.staff.science.uu.nl/∼staal006/grouping.

virtually all sets of entities that travel together. Furthermore, if we see a set of
entities traveling together that is not identified as group, we indeed see that they
disperse quickly after they have come together. The coloring of the line-segments
also nicely shows how smaller groups merge into larger ones, and how the larger
groups break up into smaller subgroups. This is further evidence that our model
captures the grouping behavior well.

Starkey. We also ran our algorithms on a real-world data set, namely on tracking
data obtained in the Starkey project [15]. We chose a period of 30 days for which
we have the locations of most of the animals. This yields a data set containing
126 trajectories with 1264 vertices each. In the Starkey video we can see that
a large group of entities quickly forms in the center, and then slowly splits into
multiple smaller groups. We notice that some entities (groups) move closely
together, whereas others often stay stationary, or travel separately.

Running times. Since we are mainly interested in how well our model captures
the grouping behavior, we do not extensively evaluate the running times of our
algorithms. On our desktop system with a AMD Phenom II X2 CPU running at
3.2Ghz our algorithm, implemented in Haskell, computes the grouping structure
for our data sets in a few seconds. Even for 160 trajectories with roughly 20
thousand vertices each we can compute and report all maximal groups in three
minutes. Most of the time is spent on computing the Reeb graph, in particular
on computing the connect/disconnect events.

6 Concluding Remarks

We introduced a trajectory grouping structure which uses Reeb graphs and a no-
tion of persistence for robustness. We showed how to characterize and efficiently
compute the maximal groups and group changes in a set of trajectories, and
bounded their maximal number. Our paper demonstrates that computational
topology provides a mathematically sound way to define grouping of moving
entities. The complexity bounds, algorithms and implementation together form
the first comprehensive study of grouping. Our videos show that our methods
produce results that correspond to human intuition.

Further work includes more extensive experiments together with domain spe-
cialists, such as behavioral biologists, to ensure further that the grouping struc-
ture captures groups and events in a natural way, and changes in the parameters
have the desired effect. Further, our research may be linked to behavioral models
of collective motion [18] and provide a (quantifiable) comparison of these.

We expect that for realistic inputs the size of the grouping structure is much
smaller than the worst-case bound that we proved. In almost all our initial
experiments the number of maximal groups was less than τ . We plan to do
further experiments to get a better estimate of this number, and to provide
faster algorithms under realistic input models. We will also work on improving
the visualization of the maximal groups and the grouping structure, based on
the reduced Reeb graph.

References

1. M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns.
Computational Geometry, 41(3):111–125, 2008.

2. S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape
analysis and applications. Theor. Comput. Sci., 392(1-3):5–22, 2008.

3. K. Buchin, M. Buchin, M. J. van Kreveld, B. Speckmann, and F. Staals. Trajectory
grouping structures. CoRR, abs/1303.6127, 2013.

4. T. K. Dey and Y. Wang. Reeb graphs: approximation and persistence. In Proc.
27th ACM Symp. on Computational Geometry, pages 226–235, 2011.

5. H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink. Time-
varying Reeb graphs for continuous space-time data. Computational Geometry,
41(3):149–166, 2008.

6. H. Edelsbrunner and J. L. Harer. Computational Topology – an introduction. Amer-
ican Mathematical Society, 2010.

7. M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proc. 2nd International
Conference Knowledge Discovery and Data mining, volume 1996, pages 226–231.
AAAI Press, 1996.

8. A. Fomenko and T. Kunii, editors. Topological Methods for Visualization. Springer,
Tokyo, Japan, 1997.

9. J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajec-
tory data. In Proc. 14th ACM International Symposium on Advances in Geographic
Information Systems, GIS ’06, pages 35–42. ACM, 2006.

10. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of pat-
terns in 2D trajectories of moving points. GeoInformatica, 11:195–215, 2007.

11. Y. Huang, C. Chen, and P. Dong. Modeling herds and their evolvements from
trajectory data. In Geographic Information Science, volume 5266 of LNCS, pages
90–105. Springer, 2008.

12. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys
in trajectory databases. PVLDB, 1:1068–1080, 2008.

13. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. In Advances in Spatial and Temporal Databases, volume 3633 of
LNCS, pages 364–381. Springer, 2005.

14. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving
object clusters. PVLDB, 3(1):723–734, 2010.

15. Oregon Department of Fish and Wildlife and the USDA Forest Service. The
Starkey project, 2004.

16. S. Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. In Proc.
28th ACM Symp. on Computational Geometry, pages 269–276, 2012.

17. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362 – 391, 1983.

18. D. Sumpter. Collective Animal Behavior. Princeton University Press, 2010.
19. M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in

spatio-temporal data. In Proc. 17th ACM International Conference on Advances
in Geographic Information Systems, GIS ’09, pages 286–295. ACM, 2009.

20. Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient algorithms for mining maximal
valid groups. The VLDB Journal, 17(3):515–535, May 2008.

21. U. Wilensky. NetLogo flocking model. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, 1998.

