HOMOTOPY MEASURES FOR REPRESENTATIVE TRAJECTORIES

Erin Chambers

Irina Kostitsyna

Maarten Löffler

Frank Staals

TRAJECTORIES

TRAJECTORIES

- Let P be n points in the plane 3

$$
3
$$

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories: curves in \mathbb{R}^{2}

TRAJECTORIES

- Trajectories are ubiquitous

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
- Trajectories are interesting
- Many different analysis tasks

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- Keep only the representatives

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- Keep only the representatives
- But what is a good representative?

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same shape

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same shape
- Output: a representative trajectory

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape
- Shape should represent the whole set of input trajectories

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape
- Shape should represent the whole set of input trajectories

OBVIOUS REPRESENTATIVES

OBVIOUS REPRESENTATIVES

- Use one of the input trajectories

OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
- There may not be any single good representative!

OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
- There may not be any single good representative!
- Pick the mean trajectory

OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
- There may not be any single good representative!
- Pick the mean trajectory
- May interfere with environment!

OBVIOUS REPRESENTATIVES

- Use one of the input trajectories
- There may not be any single good representative!
- Pick the mean trajectory
- May interfere with environment!
- Use pieces of different trajectories

MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:

MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
- Start in the middle, switch at every intersection

MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
- Start in the middle, switch at every intersection
- Mark important faces, pick the median that passes on "the right side" of each face.

OUR APPROACH

OUR APPROACH

- Trajectories are just curves

OUR APPROACH

- Trajectories are just curves
- Arrangement of curves forms a graph

OUR APPROACH

- Trajectories are just curves
- Arrangement of curves forms a graph
- Edges are directed

OUR APPROACH

- Trajectories are just curves
- Arrangement of curves forms a graph
- Edges are directed
- Output r is a path in this graph

OUR APPROACH

- Trajectories are just curves
- Arrangement of curves forms a graph
- Edges are directed
- Output r is a path in this graph
- Define the quality of a path?

OUR APPROACH

- Trajectories are just curves
- Arrangement of curves forms a graph
- Edges are directed
- Output r is a path in this graph
- Define the quality of a path?
- We define a distance measure between r and all trajectories.

OUR APPROACH

- Let D be a distance measure between two curves

OUR APPROACH

- Let D be a distance measure between two curves
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$

OUR APPROACH

- Let D be a distance measure between two curves
- We use Homotopy Area
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$

HOMOTOPY AREA?????

HOMOTOPY AREA?????

- $D(A, B)=$

$$
\inf _{H \in \mathcal{H}(A, B)} \int_{u \in[0,1]} \int_{w \in[0,1]}\left|\frac{\mathrm{d} H}{\mathrm{~d} u} \times \frac{\mathrm{d} H}{\mathrm{~d} w}\right| \mathrm{d} u \mathrm{~d} w,
$$

where $\mathcal{H}(A, B)=\ldots .$.

HOMOTOPY AREA?????

- $D(A, B)=$ the minimum area that we have to sweep curve A over to transform it into B.

HOMOTOPY AREA?????

- $D(A, B)=$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?

HOMOTOPY AREA?????

- $D(A, B)=$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
- it does not need a parametrization of the curves.

HOMOTOPY AREA?????

- $D(A, B)=$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
- it does not need a parametrization of the curves.
- robust against outliers

HOMOTOPY AREA?????

- $D(A, B)=$ the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
- it does not need a parametrization of the curves.
- robust against outliers
- tries to capture important faces automatically

HOMOTOPY AREA?????

- We assume that our trajectories:
- start in s and end in t

HOMOTOPY AREA?????

- We assume that our trajectories:
- start in s and end in t
- are simple

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$ is NP-hard
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$
is NP-hard, even for $2 x$-monotone trajectories
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for $2 x$-monotone trajectories - $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$ is NP-hard

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for $2 x$-monotone trajectories
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$
is NP-hard, even for 3 trajectories

RESULTS

- Finding r^{*} that minimizes
- $\mathcal{M}(r)=\max _{T \in \mathcal{T}} D(r, T)$
is NP-hard, even for $2 x$-monotone trajectories
- $\mathcal{D}(r)=\sum_{T \in \mathcal{T}} D(r, T)$
is NP-hard, even for 3 trajectories
Solvable efficiently when the trajectories from a DAG

MINIMIZING \mathcal{D}

- Suppose that

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

- Let r^{*} be the the $n / 2$ level.

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

- Let r^{*} be the the $n / 2$ level.
- r^{*} minimizes \mathcal{D}

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories are x-monotone
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{x} \sum_{T \in \mathcal{T}}|r(x)-T(x)| \mathrm{d} x
$$

- Let r^{*} be the the $n / 2$ level.
- r^{*} minimizes \mathcal{D}
- r^{*} is the simple median

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories form a DAG
- s and t, lie in the outer face

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories form a DAG
- s and t, lie in the outer face
- We can rewrite $\mathcal{D}(r)$ to

$$
\mathcal{D}(r) \simeq \int_{\lambda} \sum_{T \in \mathcal{T}} \text { curvelength }(r, T, \lambda) \mathrm{d} \lambda
$$

MINIMIZING \mathcal{D}

- Suppose that
- the trajectories form a DAG
- Transform the space s.t. s and t lie on the outer face.

FUTURE WORK

- Done?

FUTURE WORK

- Done?
- No
- How to handle larger class of graphs?

FUTURE WORK

- Done?
- No
- How to handle larger class of graphs?

FUTURE WORK

- Done?

- No
- How to handle larger class of graphs?
- Lift to space in which graph is a DAG

FUTURE WORK

- Done?
- No
- How to handle larger class of graphs?
- Lift to space in which graph is a DAG
- How to define "corridor"?

FUTURE WORK

- Done?
- No
- How to handle larger class of graphs?
- Lift to space in which graph is a DAG
- How to define "corridor"?

Thank You!

MIN MAX IS NP-HARD

Reduction from PARTITION:

Partition a set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ into two subsets S_{1} and S_{2} with equal total sums:

$$
\sum_{a \in S_{1}} a=\sum_{a \in S_{2}} a
$$

