HOMOTOPY MEASURES FOR REPRESENTATIVE TRAJECTORIES

Erin Chambers

Maarten Löffler

Irina Kostitsyna

Frank Staals

• Let P be n points in the plane

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories: curves in \mathbb{R}^2

• Trajectories are ubiquitous

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
- Trajectories are interesting
 - Many different analysis tasks

REPRESENTATIVE TRAJECTORY

• Problem

• Suppose we have lots of trajectories

REPRESENTATIVE TRAJECTORY

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

REPRESENTATIVE TRAJECTORY

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives
- But what is a good representative?

- Input: a set of 'similar' trajectories
 - Sort of the same shape

- Input: a set of 'similar' trajectories
 - Sort of the same shape
- Output: a representative trajectory

- Input: a set of 'similar' trajectories
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape

- Input: a set of 'similar' trajectories
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories

- Input: a set of 'similar' trajectories
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories

• Use one of the input trajectories

- Use one of the input trajectories
 - There may not be any single good representative!

- Use one of the input trajectories
 - There may not be any single good representative!
- Pick the mean trajectory

- Use one of the input trajectories
 - There may not be any single good representative!
- Pick the mean trajectory
 - May interfere with environment!

- Use one of the input trajectories
 - There may not be any single good representative!
- Pick the mean trajectory
 - May interfere with environment!
- Use pieces of different trajectories

MEDIAN TRAJECTORIES

 Buchin et.al. [ESA,2010] present two such representatives:

MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
 - Start in the middle, switch at every intersection

MEDIAN TRAJECTORIES

- Buchin et.al. [ESA,2010] present two such representatives:
 - Start in the middle, switch at every intersection
 - Mark important faces, pick the median that passes on "the right side" of each face.

• Trajectories are just curves

- Trajectories are just curves
 - Arrangement of curves forms a graph

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed
- Output r is a path in this graph

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed
- Output r is a path in this graph
- Define the quality of a path?

- Trajectories are just curves
 - Arrangement of curves forms a graph
 - Edges are directed
- Output r is a path in this graph
- Define the quality of a path?
 - We define a distance measure between r and all trajectories.

• Let *D* be a distance measure between two curves

• Let *D* be a distance measure between two curves

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

•
$$\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$$

- Let *D* be a distance measure between two curves
 - We use Homotopy Area

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

•
$$\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$$

• D(A,B) =

$$\inf_{H \in \mathcal{H}(A,B)} \int_{u \in [0,1]} \int_{w \in [0,1]} \left| \frac{\mathrm{d}H}{\mathrm{d}u} \times \frac{\mathrm{d}H}{\mathrm{d}w} \right| \, \mathrm{d}u \, \mathrm{d}w \,,$$

where $\mathcal{H}(A, B) = \dots$

• D(A, B) = the minimum area that we have to sweep curve A over to transform it into B.

- D(A, B) = the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?

- D(A, B) = the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
 - it does not need a parametrization of the curves.

- D(A, B) = the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
 - it does not need a parametrization of the curves.
 - robust against outliers

- D(A, B) = the minimum area that we have to sweep curve A over to transform it into B.
- Why homotopy area?
 - it does not need a parametrization of the curves.
 - robust against outliers
 - tries to capture important faces automatically

- We assume that our trajectories:
 - start in s and end in t

HOMOTOPY AREA?????

- We assume that our trajectories:
 - start in s and end in t
 - are simple

Finding r* that minimizes
M(r) = max_{T∈T} D(r,T)

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for 2 *x*-monotone trajectories

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for 2 *x*-monotone trajectories

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

is NP-hard

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for 2 *x*-monotone trajectories

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

is NP-hard, even for 3 trajectories

- Finding r^* that minimizes
 - $\mathcal{M}(r) = \max_{T \in \mathcal{T}} D(r, T)$ is NP-hard, even for 2 *x*-monotone trajectories

•
$$\mathcal{D}(r) = \sum_{T \in \mathcal{T}} D(r, T)$$

is NP-hard, even for 3 trajectories
Solvable efficiently when the trajectories
from a DAG

• Suppose that

- Suppose that
 - the trajectories are *x*-monotone

- Suppose that
 - the trajectories are *x*-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

- Suppose that
 - the trajectories are *x*-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

- Suppose that
 - the trajectories are *x*-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

- Suppose that
 - the trajectories are x-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

• Let r^* be the the n/2 level.

- Suppose that
 - the trajectories are x-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

- Let r^* be the the n/2 level.
 - r^* minimizes ${\cal D}$

MINIMIZING \mathcal{D}

• Suppose that

• the trajectories are x-monotone

• We can rewrite
$$\mathcal{D}(r)$$
 to
 $\mathcal{D}(r) \simeq \int_x \sum_{T \in \mathcal{T}} |r(x) - T(x)| \, \mathrm{d}x$

• Let r^* be the the n/2 level.

 \mathcal{X}

- r^* minimizes ${\cal D}$
- r^* is the simple median

- Suppose that
 - the trajectories form a DAG
 - s and t, lie in the outer face

- Suppose that
 - the trajectories form a DAG
 - s and t, lie in the outer face
- We can rewrite $\mathcal{D}(r)$ to

$$\mathcal{D}(r) \simeq \int_{\lambda} \sum_{T \in \mathcal{T}} curvelength(r, T, \lambda) \, \mathrm{d}\lambda$$

- Suppose that
 - the trajectories form a DAG
- Transform the space s.t. *s* and *t* lie on the outer face.

• Done?

- Done?
- No
 - How to handle larger class of graphs?

- Done?
- No
 - How to handle larger class of graphs?

- Done?
- No
 - How to handle larger class of graphs?
 - Lift to space in which graph is a DAG

- Done?
- No
 - How to handle larger class of graphs?
 - Lift to space in which graph is a DAG
 How to define "corridor"?

- Done?
- No
 - How to handle larger class of graphs?
 - Lift to space in which graph is a DAG
 How to define "corridor"?

Thank You!

MIN MAX IS NP-HARD

Reduction from PARTITION:

Partition a set of integers $S = \{a_1, a_2, \ldots, a_n\}$ into two subsets S_1 and S_2 with equal total sums:

$$\sum_{a \in S_1} a = \sum_{a \in S_2} a$$

