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of trajectory length:
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Find a placement of H maximizing
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Results

Fixed Size Fixed Length Relative
length : O(n2) O(n2 log2 n) O(n3)

cont .length : O(n log n) O(n log n) -

Our algoritms also work for multiple
trajectories,

and for weighted edges.
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Results

Fixed Size Fixed Length Relative
length : O(n2) O(n2 log2 n) O(n3)

maxlength : O(n log n) O(n log n) -
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Total Length, Fixed Size

Consider the subdivision A of the
parameter space of Υ.

Parameterize Υ(c) = length(T ∩ H)
by the center c of H.

max Υ occurs at a vertex of A. So,
compute Υ at each vertex of A.

Find max Υ:

Complexity A: O(n2)

O(n2)

Lemma 1. Υ is piecewise linear.

Total: O(n2)
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Contiguous Length, Fixed Size

Lemma 2. There is an optimal hotspot
H s.t. a vertex v of T [p, q] lies on ∂H.

Corollary 3. Starting point p on one of
the horizontal or vertical lines.

v

Use ray shooting queries.

Find H by finding T [p, q]. p
q

Consider Tx and Ty separately.

ttv

vx

vx + r

Tx

How to find p and q?

Running time: O(n log n)

Try to find [tp, tq]. tp tq
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Relative Length

Lemma 4. There is an optimal H
bounded by 3 objects.

Fix 2 bounding objects, consider
relativelength(T ∩ H) as a function Ψ of
the remaining degree of freedom a.

So O(n3) time to find a H that
maximizes relativelength(T ∩ H).

Same for the other cases.

Case: 3 vertices on ∂H.
O(n) breakpoints/events: O(n) time.
O(n2) pairs

Total: O(n3) time.
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Hotspot Shapes

Can we handle hotspots of a different
shape?

Future Work

H is a polygon of given shape:
noH has fixed but curved boundaries:

no

noThe shape of H is not predefined:

More variations for multiple entities:

Find a smallest hotspot s.t. all entities
spend at least L time in H.

Thank you!



Total Length, Fixed Length

Use parametric search, using the
Fixed-Size algorithm as a decision
algorithm.

Running time: O(n2 log2 n).

Goal: minimize the side length of H
for a fixed trajectory length L.
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Contiguous Length, Fixed Length

Consider maxlength(T ∩ H) as a function
ψ depending on tp.

Lemma 5. φ is piecewise linear, its break
points corresponding to hotspots H s.t.

...

Find H by finding T [p, q].

Compute φ at all break points and select
the maximum.

Running time: O(n log n)

p


