

Results

Fixed Size Fixed Length Relative
length:
$O\left(n^{2}\right)$ $O\left(n^{2} \log ^{2} n\right) \quad O\left(n^{3}\right)$ cont.length: $O(n \log n) \quad O(n \log n)$

Results

Fixed Size Fixed Length Relative length: $O\left(n^{2}\right) \quad O\left(n^{2} \log ^{2} n\right) \quad O\left(n^{3}\right)$ cont.length: $O(n \log n) \quad O(n \log n)$

Our algoritms also work for multiple trajectories,

Results

Fixed Size Fixed Length Relative length: $\quad O\left(n^{2}\right) \quad O\left(n^{2} \log ^{2} n\right) \quad O\left(n^{3}\right)$ cont.length: $O(n \log n) \quad O(n \log n)$

Our algoritms also work for multiple trajectories,
and for weighted edges.

Results

Fixed Size Fixed Length Relative
length:
$O\left(n^{2}\right) \quad O\left(n^{2} \log ^{2} n\right) \quad O\left(n^{3}\right)$ maxlength: $O(n \log n) \quad O(n \log n)$

Total Length, Fixed Size
Parameterize $\Upsilon(c)=\operatorname{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Total Length, Fixed Size
Parameterize $\Upsilon(c)=\operatorname{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Lemma 1. Υ is piecewise linear.

Total Length, Fixed Size Parameterize $\Upsilon(c)=\operatorname{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Lemma 1. Υ is piecewise linear.
Consider the subdivision \mathcal{A} of the parameter space of Υ.

Total Length, Fixed Size Parameterize $\Upsilon(c)=\operatorname{length}(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H}.

Lemma 1. Υ is piecewise linear.
Consider the subdivision \mathcal{A} of the parameter space of Υ.
$\max \Upsilon$ occurs at a vertex of \mathcal{A}. So, compute Υ at each vertex of \mathcal{A}.

Total Length, Fixed Length

Goal: minimize the side length of \mathcal{H} for a fixed trajectory length L.

Use parametric search, using the Fixed-Size algorithm as a decision algorithm.

Running time: $O\left(n^{2} \log ^{2} n\right)$.

