

Given a trajectory ${\mathcal T}$ of a moving entity.

Find a small region where the entity spends a large amount of time:

Given a trajectory ${\mathcal T}$ of a moving entity.

Find a small region where the entity spends a large amount of time: a hotspot \mathcal{H} .

Given a trajectory ${\mathcal T}$ of a moving entity.

Find a small square where the entity spends a large amount of time: a hotspot \mathcal{H} .

Given a trajectory ${\mathcal T}$ of a moving entity.

Find a small square where the entity spends a large amount of time: a hotspot \mathcal{H} .

time \approx length

Given a trajectory \mathcal{T} of a moving entity and a square \mathcal{H} .

Find a placement of ${\mathcal H}$ maximizing

 $length(\mathcal{T} \cap \mathcal{H})$

Given a trajectory ${\mathcal T}$ of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $size(\mathcal{H})$, s.t.

 $length(\mathcal{T} \cap \mathcal{H}) \ge L$

Given a trajectory ${\mathcal T}$ of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $size(\mathcal{H})$, s.t.

 $length(\mathcal{T} \cap \mathcal{H}) \ge L$

Given a trajectory ${\mathcal T}$ of a moving entity and a length L

Find a placement of \mathcal{H} minimizing $size(\mathcal{H})$, s.t.

 $cont.length(\mathcal{T} \cap \mathcal{H}) \ge L$

Given a trajectory \mathcal{T} of a moving entity and a square \mathcal{H} .

Find a placement of ${\mathcal H}$ maximizing

 $cont.length(\mathcal{T} \cap \mathcal{H})$

Given a trajectory $\ensuremath{\mathcal{T}}$ of a moving entity.

Find a placement of ${\mathcal H}$ maximizing

 $\frac{length(\mathcal{T} \cap \mathcal{H})}{sidelength(\mathcal{H})}$

Given a trajectory ${\mathcal T}$ of a moving entity.

Find a placement of ${\mathcal H}$ maximizing

 $\frac{cont.length(\mathcal{T} \cap \mathcal{H})}{sidelength(\mathcal{H})}$

Results

length : cont.length :

Fixed Size $O(n^2)$ $O(n^2 \log^2 n)$ $O(n\log n) = O(n\log n)$

Fixed Length

Our algoritms also work for multiple trajectories,

- Finding places
- Segmentation

- Finding places
- Segmentation
- Clustering

- Finding places
- Segmentation
- Clustering
- Visualization

• Finding places

- Segmentation
- Clustering
- Visualization

by the center c of \mathcal{H} .

Lemma 1. Υ is piecewise linear.

Consider the subdivision \mathcal{A} of the parameter space of Υ .

Parameterize $\Upsilon(c) = length(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H} .

Lemma 1. Υ is piecewise linear.

Consider the subdivision \mathcal{A} of the parameter space of Υ . max Υ occurs at a vertex of \mathcal{A} . So, compute Υ at each vertex of \mathcal{A} .

Parameterize $\Upsilon(c) = length(\mathcal{T} \cap \mathcal{H})$ by the center c of \mathcal{H} .

Lemma 1. Υ is piecewise linear.

Consider the subdivision \mathcal{A} of the parameter space of Υ . $\max \Upsilon$ occurs at a vertex of \mathcal{A} . So, compute Υ at each vertex of \mathcal{A} . Complexity \mathcal{A} : $O(n^2)$

 (n^2)

 $O(n^2)$ Find $\max \Upsilon$: Total:

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of \mathcal{T} lies on $\partial \mathcal{H}$.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point *p* on one of the horizontal or vertical lines.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines. How to find p and q?

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q? Consider \mathcal{T}_x and \mathcal{T}_y separately.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q? Consider \mathcal{T}_x and \mathcal{T}_y separately. Try to find $[t_p, t_q]$.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?

Consider \mathcal{T}_x and \mathcal{T}_y separately. Try to find $[t_p, t_q]$. Use ray shooting queries.

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Lemma 2. There is an optimal hotspot \mathcal{H} s.t. a vertex v of $\mathcal{T}[p,q]$ lies on $\partial \mathcal{H}$.

Corollary 3. Starting point p on one of the horizontal or vertical lines.

How to find p and q?

Consider \mathcal{T}_x and \mathcal{T}_y separately. Try to find $[t_p, t_q]$. Use ray shooting queries. Running time: $O(n \log n)$

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$. 2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H} .

. . .

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$. 2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H} .

3 edges through corners of \mathcal{H} .

. . .

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

3 vertices on $\partial \mathcal{H}$. 2 vertices on $\partial \mathcal{H} + 1$ edge through a corner of \mathcal{H} .

3 edges through corners of \mathcal{H} .

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Case: 3 vertices on $\partial \mathcal{H}$. O(n) breakpoints/events: O(n) time.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Total:

 $O(n^3)$ time.

Lemma 4. There is an optimal \mathcal{H} bounded by 3 objects.

Fix 2 bounding objects, consider $relativelength(\mathcal{T} \cap \mathcal{H})$ as a function Ψ of the remaining degree of freedom a.

Total: Same for the other cases. $O(n^3)$ time.

So $O(n^3)$ time to find a \mathcal{H} that maximizes $relative length(\mathcal{T} \cap \mathcal{H})$.

Can we handle hotspots of a different shape?

Can we handle hotspots of a different shape?

 ${\cal H}$ is a convex polygon of given shape:

yes

Can we handle hotspots of a different shape?

 \mathcal{H} is a convex polygon of given shape:

 ${\cal H}$ is a polygon of given shape: no

Can we handle hotspots of a different shape?

Can we handle hotspots of a different shape?

Can we handle hotspots of a different shape?

Can we handle hotspots of a different shape?

Can we handle hotspots of a different shape?

More variations for multiple entities:

Find a smallest hotspot s.t. all entities spend at least L time in \mathcal{H} .

Can we handle hotspots of a different shape?

More variations for multiple entities:

Find a smallest hotspot s.t. all entities spend at least L time in \mathcal{H} .

Total Length, Fixed Length Goal: minimize the side length of \mathcal{H} for a fixed trajectory length L. Use parametric search, using the Fixed-Size algorithm as a decision algorithm. Running time: $O(n^2 \log^2 n)$.

p

p

Contiguous Length, Fixed Length

 \mathcal{D}

Find \mathcal{H} by finding $\mathcal{T}[p,q]$.

Consider $maxlength(\mathcal{T} \cap \mathcal{H})$ as a function ψ depending on t_p .

 \mathcal{D}

Consider $maxlength(\mathcal{T} \cap \mathcal{H})$ as a function ψ depending on t_p .

Lemma 5. ϕ is piecewise linear, its break points corresponding to hotspots \mathcal{H} s.t.

. . .

 \boldsymbol{n}

Consider $maxlength(\mathcal{T} \cap \mathcal{H})$ as a function ψ depending on t_p .

Lemma 5. ϕ is piecewise linear, its break points corresponding to hotspots \mathcal{H} s.t.

Compute ϕ at all break points and select the maximum.

Running time: $O(n \log n)$