Geographic Grid Embeddings

Frank Staals

Eindhoven University of Technology

July 18, 2011

Frank Staals Geographic Grid Embeddings

Given a map with n regions we want to show data for each region.

Given a map with n regions we want to show data for each region.

Desired properties:

- easy to read,
- easy to find the data for a given region,
- easy to compare for multiple regions, and
- the usable for both scalar values and multi-variate data.

Given a map with n regions we want to show data for each region.

Use a choropleth map: colour the regions according to the data.

Use a choropleth map: colour the regions according to the data. **Problem:** Difficult to compare.

Use a cartogram: scale the region according to the data.

Use a cartogram: scale the region according to the data. **Problems:** Hard to recognise regions, difficult to compare.

Use a symbol map: show a symbol/graphic to represent the data.

Use a symbol map: show a symbol/graphic to represent the data. **Problem:** Adding symbols clutters the view.

Idea: Add the symbols/graphics in a regular grid. The position in the grid corresponds with geographic location in the map.

Related work: Spatially Ordered Treemaps wood2008spatially

Model the problem as a Pointset Matching Problem.

We represent each region in the map by blue point. This yields the set of blue points A.

We represent each grid cell by a red point. This yields the set of red points B.

Goal: Find the "best" 1-1 matching $\phi : A \rightarrow B$.

• minimise the total distance,

- minimise the total distance,
- preserve the directional relation, and

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

- minimise the total distance,
- preserve the directional relation, and

To get the best matching we allow translation and scaling of the pointset A.

 a_1

 a_2

$$D_I(\phi) = \sum_{a \in A} d(a, \phi(a))$$

where d is a distance metric.

$$D_I(\phi) = \sum_{a \in A} d(a, \phi(a))$$

where d is a distance metric. We will consider $d = L_1$, and $d = L_2^2$.

$$D_I(\phi) = \sum_{a \in A} d(a, \phi(a))$$

where d is a distance metric. We will consider $d = L_1$, and $d = L_2^2$. Let Φ be the set of all 1-1 matchings between A and B. We then want a 1-1 matching ϕ^* such that:

$$D_I(\phi^*) = \min_{\phi \in \Phi} D_I(\phi)$$

Minimising D_l

Question: How can we find a matching ϕ that minimises D_I ? **Answer:** Use Linear Programming. Let f_{ab} denote the flow from a to b.

Minimising D_{I_1}

Question: How can we find a matching ϕ that minimises D_I ? **Answer:** Use Linear Programming. Let f_{ab} denote the flow from a to b.

minimize
$$\sum_{a \in A} \sum_{b \in B} f_{ab} d(a, b)$$

subject to:

$$\begin{split} \sum_{b\in B} f_{ab} &= 1 & \forall a\in A \\ \sum_{a\in A} f_{ab} &= 1 & \forall b\in B \\ 0 &\leq f_{ab} &\leq 1 & \forall a\in A, b\in B \end{split}$$

Analysis: This LP is an instance of the assignment problem.

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_1 can be computed in $O(n^3)$ time.

Analysis: This LP is an instance of the assignment problem.

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_1 can be computed in $O(n^3)$ time.

Theorem (vaidya1988geometry)

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_I with $d = L_1$ can be computed in $O(n^2(\log n)^3)$ time.

$$D_I(\phi) = \sum_{a \in A} d(a, \phi(a))$$

For a 1-1 matching ϕ between A and B and a translation t we define:

$$D_{\mathcal{T}}(\phi, t) = \sum_{a \in A} d(a + t, \phi(a))$$

For a 1-1 matching ϕ between A and B and a translation t we define:

$$D_{\mathcal{T}}(\phi,t) = \sum_{a \in \mathcal{A}} d(a+t,\phi(a))$$

We now want a 1-1 matching ϕ^* and a translation t^* such that:

$$D_{\mathcal{T}}(\phi^*,t^*) = \min_{\phi \in \Phi, t \in \mathcal{T}} D_{\mathcal{T}}(\phi,t)$$

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^* such that $A^* = \{a + t^* \mid a \in A\}$ and B are x-aligned and $D_T(\phi, t^*) \leq D_I(\phi)$.

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^* such that $A^* = \{a + t^* \mid a \in A\}$ and B are x-aligned and $D_T(\phi, t^*) \leq D_I(\phi)$.

Symmetrically we can show that there is a vertical translation t^* that y-aligns two point sets A and B

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^* such that $A^* = \{a + t^* \mid a \in A\}$ and B are x-aligned and $D_T(\phi, t^*) \leq D_I(\phi)$.

Symmetrically we can show that there is a vertical translation t^* that y-aligns two point sets A and B

There is a translation t that both x-aligns and y-aligns A and B and minimises $D_{\mathcal{T}}$.

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^* such that $A^* = \{a + t^* \mid a \in A\}$ and B are x-aligned and $D_T(\phi, t^*) \leq D_I(\phi)$.

Symmetrically we can show that there is a vertical translation t^* that y-aligns two point sets A and B

There is a translation t that both x-aligns and y-aligns A and B and minimises $D_{\mathcal{T}}$.

 \implies We have to consider at most n^4 translations.

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and translation t that minimise D_T can be computed in $O(n^6(\log n)^3)$ time.

Minimising D_T with the L_1 distance

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Minimising D_T with the L_1 distance

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Frank Staals Geographic Grid Embeddings

Minimising $D_{\mathcal{T}}$ with the L_1 distance

Corollary

Given a set A of n points in the plane and a set B of n grid points in an $R \times C$ grid, a one-to-one matching ϕ and translation t that minimise D_T can be computed in $O(nCnR \cdot n^2(\log n)^3) = O(n^5(\log n)^3)$ time. For a 1-1 matching ϕ between A and B and a translation t we define:

$$D_{\mathcal{T}}(\phi,t) = \sum_{oldsymbol{a}\in\mathcal{A}} d(oldsymbol{a}+t,\phi(oldsymbol{a}))$$

For a 1-1 matching ϕ between A and B and a scaling λ we define:

$$D_{\Lambda}(\phi,\lambda) = \sum_{a\in A} d(\lambda a,\phi(a))$$

For a 1-1 matching ϕ between A and B and a scaling λ we define:

$$D_{\Lambda}(\phi,\lambda) = \sum_{a\in A} d(\lambda a,\phi(a))$$

We now want a 1-1 matching ϕ^* and a scaling λ^* such that:

$$D_{\Lambda}(\phi^*,\lambda^*) = \min_{\phi \in \Phi, \lambda \in \Lambda} D_{\Lambda}(\phi,\lambda)$$

Minimising D_{Λ} with the L_1 distance

Idea: Use the same approach as with translation...

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O(n^6(\log n)^3)$ time.

Minimising D_{Λ} with the L_1 distance

Idea: Use the same approach as with translation...

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O(n^{6}(\log n)^{3})$ time.

Corollary

Given a set A of n points in the plane and a set B of n grid points in an $R \times C$ grid, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O(nCnR \cdot n^{2}(\log n)^{3}) = O(n^{5}(\log n)^{3})$ time. For a 1-1 matching ϕ between A and B, a translation t, and a scaling λ we define:

$$D(\phi, t, \lambda) = \sum_{a \in A} d(\lambda a + t, \phi(a))$$

For a 1-1 matching ϕ between A and B, a translation t, and a scaling λ we define:

$$D(\phi, t, \lambda) = \sum_{a \in A} d(\lambda a + t, \phi(a))$$

We now want a 1-1 matching $\phi^*,$ a translation $t^*,$ and a scaling λ^* such that:

$$D_{\Lambda}(\phi^*, t^*, \lambda^*) = \min_{\phi \in \Phi, t \in \mathcal{T}, \lambda \in \Lambda} D(\phi, t, \lambda)$$

Idea: If one transformation can *x*-align one pair of points then two transformations can *x*-align two pairs of points.

Idea: If one transformation can *x*-align one pair of points then two transformations can *x*-align two pairs of points.

$$t_x = |b_x - a_x|$$

 $\lambda_x = |b'_x - a'_x|$

Idea: If one transformation can *x*-align one pair of points then two transformations can *x*-align two pairs of points.

$$t_x = |b_x - a_x|$$

 $\lambda_x = |b'_x - a'_x|$

Problem: There is only a unique solution if a_x , a'_x , b_x , and b'_x are independent. This is not necessarily the case in our setting!

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.

So only one translation to consider.

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.

So only one translation to consider.

Question: How about minimising D_{Λ} ?

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.

So only one translation to consider.

Question: How about minimising D_{Λ} ?

Answer: Does not work...

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Given the dual graph of the regions G = (A, E) and the dual graph of the grid H = (B, Z) find an embedding $\phi : G \hookrightarrow H$ that maximises the number of preserved adjacencies from G. Given the dual graph of the regions G = (A, E) and the dual graph of the grid H = (B, Z) find an embedding $\phi : G \hookrightarrow H$ that maximises the number of preserved adjacencies from G.

> Given two graphs G = (A, E) and H = (B, Z), find the maximal size subsets $E' \subseteq E$ and $Z' \subseteq Z$ such that (A, E') and (B, Z') are isomorphic.

Given the dual graph of the regions G = (A, E) and the dual graph of the grid H = (B, Z) find an embedding $\phi : G \hookrightarrow H$ that maximises the number of preserved adjacencies from G.

Maximum Common Edge Subgraph

Given two graphs G = (A, E) and H = (B, Z), find the maximal size subsets $E' \subseteq E$ and $Z' \subseteq Z$ such that (A, E') and (B, Z') are isomorphic.

Problem: MAXIMUM COMMON EDGE SUBGRAPH is NP-complete.

Adjacency Preserving Grid Embedding

Given a planar graph G = (V, E) and a grid graph H = (N, Z) with |V| = |N|, is it possible to find an embedding $\phi : G \hookrightarrow H$ that preserves at least k adjacencies from G?

3-PARTITION $\mathbf{5}$ n = 6, w = 15X

3-PARTITION $\mathbf{5}$ n = 6, w = 15X

3-PARTITION is strongly NP-complete:

NP-hard even if all $x \in X$ bounded by a polynomial in n.

Given X, construct a grid graph H and a graph G = (V, E) such that:

 ϕ preserves |E| edges $\iff X$ has a 3-partition

NP-Completeness Proof

H is a grid graph with 3n + 2 columns and $R = \max(w + 4, 3n + 3)$ rows.

NP-Completeness Proof

$$w + 3$$

G consists of 3n + 1 components:

- a separator S
- for each x ∈ X a chain C(x)

G consists of 3n + 1 components:

- a separator S
- for each x ∈ X a
 chain C(x)

G consists of 3n + 1 components:

- a separator S
- for each x ∈ X a chain C(x)

G is polynomial in size.

Suppose ϕ preserves all |E| edges.

There are only 2 placements possible for S.

Suppose ϕ preserves all |E| edges.

There are only 2 placements possible for S.

Suppose ϕ preserves all |E| edges.

There are only 2 placements possible for S.

Suppose ϕ preserves all |E| edges.

C(x) placed in a single column.

Suppose ϕ preserves all |E| edges.

 ϕ yields a valid 3-partition of X.

• Use an MAXIMUM COMMON SUBGRAPH algorithm. For example mcgregor1982backtrack's algorithm.

Algorithms for preserving adjacencies

 Use an MAXIMUM COMMON SUBGRAPH algorithm. For example mcgregor1982backtrack's algorithm. ⇒ Too slow!

Algorithms for preserving adjacencies

- Use an MAXIMUM COMMON SUBGRAPH algorithm. For example mcgregor1982backtrack's algorithm. ⇒ Too slow!
- Approximate.

- Use an MAXIMUM COMMON SUBGRAPH algorithm. For example mcgregor1982backtrack's algorithm. ⇒ Too slow!
- Approximate.

Problem: kann1992approximability shows a lot of MAXIMUM SOMMON SUBGRAPH problems are NP-hard to approximate.

- Use an MAXIMUM COMMON SUBGRAPH algorithm. For example mcgregor1982backtrack's algorithm. ⇒ Too slow!
- Approximate.

Problem: kann1992approximability shows a lot of MAXIMUM SOMMON SUBGRAPH problems are NP-hard to approximate.

We designed a 4-approximation algorithm to embed a planar graph into a grid graph.

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and

preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Algorithm DIRREL-PRESERVE

- Let w(a, b) denote the number of pairs involving a with the wrong directional relation if we match a to b.
- Ocompute a minimal distance matching using w as distance measure.

Algorithm DIRREL-PRESERVE

- Let w(a, b) denote the number of pairs involving a with the wrong directional relation if we match a to b.
- Ocompute a minimal distance matching using w as distance measure.

Conjecture

DIRREL-PRESERVE *is a 4-approximation algorithm*.

Results for different measures

L22

adjacency

Results for different measures

L1_trans

L1_scale

adjacency

Results for different grid sizes

Frank Staals Geographic Grid Embeddings

Results for different grid sizes

Results for different grid sizes

Frank Staals Geographic Grid Embeddings

- □ 1 electoral vote
- McCain
- Obama
- other

	-	•				:-	==
WA	MT	ND	MN	WI	NY	VT	ME
 .		-					====
OR	ID	SD	IA	MI	PA	NH	MA
 .	•					 .	:
NV	WY	NE	IL	IN	ОН	СТ	RI
	••••	•••	•••••	••••			
UT	CO	KS	MO	KY	WV	MD	NJ
	::.			•••••	••••		. .
CA	NM	OK	AR	TN	SC	VA	DE
AZ	TX	LA	MS	AL	GA	FL	NC

Examples

U.S. Population estimates in 2009 per race

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?

• . . .

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?
 - $\begin{array}{c} 6\times 6 \\ \{(1,1),(1,6),(2,6)\} \end{array} \xrightarrow{6\times 6} \\ 6\times 6 \\ \{(1,1),(1,0),(6,1)\} \end{array} \xrightarrow{6\times 6} \\ 6\times 6 \\ \{(1,1),(1,0),(6,1)\} \end{array} \xrightarrow{6\times 6} \\ 6\times 6 \\ \{(1,1),(1,0),(6,1)\} \end{array}$

• . . .

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?
 - $\begin{array}{c} 3 \times 11 \\ 6 \times 6 \\ \{(1,1),(2,1),(3,1)\} \end{array} \xrightarrow{6 \times 6} \\ \{(1,1),(1,2),(2,1)\} \end{array}$

Thank you! Questions?

References I