Geographic Grid Embeddings

Frank Staals

Eindhoven University of Technology
July 18, 2011

Visualising Data

Given a map with n regions we want to show data for each region.

Visualising Data

Given a map with n regions we want to show data for each region.

Desired properties:

- easy to read,
- easy to find the data for a given region,
- easy to compare for multiple regions, and
- the usable for both scalar values and multi-variate data.

Visualising Data

Given a map with n regions we want to show data for each region.

Visualisation Techniques

Use a choropleth map: colour the regions according to the data.

Visualisation Techniques

Use a choropleth map: colour the regions according to the data. Problem: Difficult to compare.

Visualisation Techniques

Use a cartogram: scale the region according to the data.

Visualisation Techniques

Use a cartogram: scale the region according to the data.
Problems: Hard to recognise regions, difficult to compare.

Visualisation Techniques

Use a symbol map: show a symbol/graphic to represent the data.

Visualisation Techniques

Use a symbol map: show a symbol/graphic to represent the data. Problem: Adding symbols clutters the view.

Visualisation Techniques

Idea: Add the symbols/graphics in a regular grid. The position in the grid corresponds with geographic location in the map.

Visualisation Techniques

Related work: Spatially Ordered Treemaps wood2008spatially

Visualisation Techniques

\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

Model the problem as a Pointset Matching Problem.

Visualisation Techniques

We represent each region in the map by blue point. This yields the set of blue points A.

Visualisation Techniques

\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

We represent each grid cell by a red point. This yields the set of red points B.

Visualisation Techniques

\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

Goal: Find the "best" 1-1 matching $\phi: A \rightarrow B$.

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,

${ }^{\bullet}{ }_{b_{2}}$

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and

- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Modelling distance

For a 1-1 matching ϕ between A and B we define:

$$
D_{l}(\phi)=\sum_{a \in A} d(a, \phi(a))
$$

where d is a distance metric.

Modelling distance

For a 1-1 matching ϕ between A and B we define:

$$
D_{l}(\phi)=\sum_{a \in A} d(a, \phi(a))
$$

where d is a distance metric. We will consider $d=L_{1}$, and $d=L_{2}^{2}$.

Modelling distance

For a 1-1 matching ϕ between A and B we define:

$$
D_{l}(\phi)=\sum_{a \in A} d(a, \phi(a))
$$

where d is a distance metric. We will consider $d=L_{1}$, and $d=L_{2}^{2}$.
Let Φ be the set of all 1-1 matchings between A and B.
We then want a 1-1 matching ϕ^{*} such that:

$$
D_{l}\left(\phi^{*}\right)=\min _{\phi \in \Phi} D_{l}(\phi)
$$

Minimising D_{l}

Question: How can we find a matching ϕ that minimises D_{l} ?
Answer: Use Linear Programming. Let $f_{a b}$ denote the flow from a to b.

Minimising D_{l}

Question: How can we find a matching ϕ that minimises D_{l} ?
Answer: Use Linear Programming. Let $f_{a b}$ denote the flow from a to b.

$$
\text { minimize } \sum_{a \in A} \sum_{b \in B} f_{a b} d(a, b)
$$

subject to:

$$
\begin{array}{lr}
\sum_{b \in B} f_{a b}=1 & \forall a \in A \\
\sum_{a \in A} f_{a b}=1 & \forall b \in B \\
0 \leq f_{a b} \leq 1 & \forall a \in A, b \in B
\end{array}
$$

Minimising D_{l}

Analysis: This LP is an instance of the assignment problem.

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_{I} can be computed in $O\left(n^{3}\right)$ time.

Minimising D_{l}

Analysis: This LP is an instance of the assignment problem.

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_{I} can be computed in $O\left(n^{3}\right)$ time.

Theorem (vaidya1988geometry)

Given two sets A and B of n points in the plane, a one-to-one matching ϕ that minimises D_{I} with $d=L_{1}$ can be computed in $O\left(n^{2}(\log n)^{3}\right)$ time.

Modelling distance II

For a 1-1 matching ϕ between A and B we define:

$$
D_{l}(\phi)=\sum_{a \in A} d(a, \phi(a))
$$

Modelling distance II

For a 1-1 matching ϕ between A and B and a translation t we define:

$$
D_{\mathcal{T}}(\phi, t)=\sum_{a \in A} d(a+t, \phi(a))
$$

Modelling distance II

For a 1-1 matching ϕ between A and B and a translation t we define:

$$
D_{\mathcal{T}}(\phi, t)=\sum_{a \in A} d(a+t, \phi(a))
$$

We now want a 1-1 matching ϕ^{*} and a translation t^{*} such that:

$$
D_{\mathcal{T}}\left(\phi^{*}, t^{*}\right)=\min _{\phi \in \Phi, t \in \mathcal{T}} D_{\mathcal{T}}(\phi, t)
$$

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

0

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Lemma

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^{*} such that $A^{*}=\left\{a+t^{*} \mid a \in A\right\}$ and B are x-aligned and $D_{\mathcal{T}}\left(\phi, t^{*}\right) \leq D_{l}(\phi)$.

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Lemma

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^{*} such that $A^{*}=\left\{a+t^{*} \mid a \in A\right\}$ and B are x-aligned and $D_{\mathcal{T}}\left(\phi, t^{*}\right) \leq D_{l}(\phi)$.

Symmetrically we can show that there is a vertical translation t^{*} that y-aligns two point sets A and B

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Lemma

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^{*} such that $A^{*}=\left\{a+t^{*} \mid a \in A\right\}$ and B are x-aligned and $D_{\mathcal{T}}\left(\phi, t^{*}\right) \leq D_{l}(\phi)$.

Symmetrically we can show that there is a vertical translation t^{*} that y-aligns two point sets A and B

There is a translation t that both x -aligns and y -aligns A and B and minimises $D_{\mathcal{T}}$.

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Lemma

Let A and B be two non x-aligned sets of n points in the plane, and let ϕ be a one-to-one matching between A and B. Then there is a horizontal translation t^{*} such that $A^{*}=\left\{a+t^{*} \mid a \in A\right\}$ and B are x-aligned and $D_{\mathcal{T}}\left(\phi, t^{*}\right) \leq D_{l}(\phi)$.

Symmetrically we can show that there is a vertical translation t^{*} that y-aligns two point sets A and B

There is a translation t that both x -aligns and y -aligns A and B and minimises $D_{\mathcal{T}}$.
\Longrightarrow We have to consider at most n^{4} translations.

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and translation that minimise $D_{\mathcal{T}}$ can be computed in $O\left(n^{6}(\log n)^{3}\right)$ time.

Minimising $D_{\mathcal{T}}$ with the L_{1} distance

Corollary

Given a set A of n points in the plane and a set B of n grid points in an $R \times C$ grid, a one-to-one matching ϕ and translation t that minimise $D_{\mathcal{T}}$ can be computed in
$O\left(n C n R \cdot n^{2}(\log n)^{3}\right)=O\left(n^{5}(\log n)^{3}\right)$ time.

Modelling distance III

For a 1-1 matching ϕ between A and B and a translation t we define:

$$
D_{\mathcal{T}}(\phi, t)=\sum_{a \in A} d(a+t, \phi(a))
$$

Modelling distance III

For a 1-1 matching ϕ between A and B and a scaling λ we define:

$$
D_{\wedge}(\phi, \lambda)=\sum_{a \in A} d(\lambda a, \phi(a))
$$

Modelling distance III

For a 1-1 matching ϕ between A and B and a scaling λ we define:

$$
D_{\wedge}(\phi, \lambda)=\sum_{a \in A} d(\lambda a, \phi(a))
$$

We now want a 1-1 matching ϕ^{*} and a scaling λ^{*} such that:

$$
D_{\Lambda}\left(\phi^{*}, \lambda^{*}\right)=\min _{\phi \in \Phi, \lambda \in \Lambda} D_{\Lambda}(\phi, \lambda)
$$

Minimising D_{\wedge} with the L_{1} distance

Idea: Use the same approach as with translation...

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O\left(n^{6}(\log n)^{3}\right)$ time.

Minimising D_{\wedge} with the L_{1} distance

Idea: Use the same approach as with translation...

Theorem

Given two sets A and B of n points in the plane, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O\left(n^{6}(\log n)^{3}\right)$ time.

Corollary

Given a set A of n points in the plane and a set B of n grid points in an $R \times C$ grid, a one-to-one matching ϕ and scaling λ that minimise D_{Λ} can be computed in $O\left(n C n R \cdot n^{2}(\log n)^{3}\right)=O\left(n^{5}(\log n)^{3}\right)$ time.

Modelling distance IIII

For a 1-1 matching ϕ between A and B, a translation t, and a scaling λ we define:

$$
D(\phi, t, \lambda)=\sum_{a \in A} d(\lambda a+t, \phi(a))
$$

Modelling distance IIII

For a 1-1 matching ϕ between A and B, a translation t, and a scaling λ we define:

$$
D(\phi, t, \lambda)=\sum_{a \in A} d(\lambda a+t, \phi(a))
$$

We now want a 1-1 matching ϕ^{*}, a translation t^{*}, and a scaling λ^{*} such that:

$$
D_{\Lambda}\left(\phi^{*}, t^{*}, \lambda^{*}\right)=\min _{\phi \in \Phi, t \in \mathcal{T}, \lambda \in \Lambda} D(\phi, t, \lambda)
$$

Minimising D with the L_{1} distance

Idea: If one transformation can x-align one pair of points then two transformations can x-align two pairs of points.

Minimising D with the L_{1} distance

Idea: If one transformation can x-align one pair of points then two transformations can x-align two pairs of points.

$$
\begin{aligned}
t_{x} & =\left|b_{x}-a_{x}\right| \\
\lambda_{x} & =\left|b_{x}^{\prime}-a_{x}^{\prime}\right|
\end{aligned}
$$

Minimising D with the L_{1} distance

Idea: If one transformation can x-align one pair of points then two transformations can x-align two pairs of points.

$$
\begin{aligned}
t_{x} & =\left|b_{x}-a_{x}\right| \\
\lambda_{x} & =\left|b_{x}^{\prime}-a_{x}^{\prime}\right|
\end{aligned}
$$

Problem: There is only a unique solution if $a_{x}, a_{x}^{\prime}, b_{x}$, and b_{x}^{\prime} are independent. This is not necessarily the case in our setting!

Minimising $D_{\mathcal{T}}$ and D_{\wedge} with the L_{2}^{2} distance

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.
So only one translation to consider.

Minimising $D_{\mathcal{T}}$ and D_{\wedge} with the L_{2}^{2} distance

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.
So only one translation to consider.
Question: How about minimising D_{Λ} ?

Minimising $D_{\mathcal{T}}$ and D_{\wedge} with the L_{2}^{2} distance

Theorem (By cohen1999earth)

The translation that aligns the centroids of A and B minimises $D_{\mathcal{T}}$.
So only one translation to consider.
Question: How about minimising D_{Λ} ?
Answer: Does not work...

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and
- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Problem Definition

Given the dual graph of the regions $G=(A, E)$ and the dual graph of the grid $H=(B, Z)$ find an embedding $\phi: G \hookrightarrow H$ that maximises the number of preserved adjacencies from G.

Problem Definition

Given the dual graph of the regions $G=(A, E)$ and the dual graph of the grid $H=(B, Z)$ find an embedding $\phi: G \hookrightarrow H$ that maximises the number of preserved adjacencies from G.

Given two graphs $G=(A, E)$ and $H=(B, Z)$, find the maximal size subsets $E^{\prime} \subseteq E$ and $Z^{\prime} \subseteq Z$ such that $\left(A, E^{\prime}\right)$ and $\left(B, Z^{\prime}\right)$ are isomorphic.

Problem Definition

Given the dual graph of the regions $G=(A, E)$ and the dual graph of the grid $H=(B, Z)$ find an embedding $\phi: G \hookrightarrow H$ that maximises the number of preserved adjacencies from G.

Maximum Common Edge Subgraph

Given two graphs $G=(A, E)$ and $H=(B, Z)$, find the maximal size subsets $E^{\prime} \subseteq E$ and $Z^{\prime} \subseteq Z$ such that $\left(A, E^{\prime}\right)$ and $\left(B, Z^{\prime}\right)$ are isomorphic.

Problem: Maximum Common Edge Subgraph is NP-complete.

Problem Definition

Adjacency Preserving Grid Embedding

Given a planar graph $G=(V, E)$ and a grid graph $H=(N, Z)$ with $|V|=|N|$, is it possible to find an embedding $\phi: G \hookrightarrow H$ that preserves at least k adjacencies from G ?

3-Partition

3-Partition

3-Partition

3-Partition

3-Partition

3-Partition

3-Partition

3-Partition is strongly NP-complete:
NP-hard even if all $x \in X$ bounded by a polynomial in n.

NP-Completeness Proof

Given X, construct a grid graph H and a graph $G=(V, E)$ such that:
ϕ preserves $|E|$ edges $\Longleftrightarrow X$ has a 3-partition

NP-Completeness Proof

H is a grid graph with $3 n+2$ columns and $R=\max (w+4,3 n+3)$ rows.

NP-Completeness Proof

G consists of $3 n+1$ components:

- a separator S
- for each $x \in X$ a chain $C(x)$

NP-Completeness Proof

G consists of $3 n+1$

 components:

- a separator S
- for each $x \in X$ a chain $C(x)$

NP-Completeness Proof

G consists of $3 n+1$

components:

- a separator S
- for each $x \in X$ a chain $C(x)$
G is polynomial in size.

NP-Completeness Proof

Suppose ϕ preserves all $|E|$ edges.
\Longrightarrow
There are only 2 placements possible for S.

NP-Completeness Proof

Suppose ϕ preserves all $|E|$ edges.
\Longrightarrow
There are only 2 placements possible for S.

NP-Completeness Proof

Suppose ϕ preserves all $|E|$ edges.
\Longrightarrow
There are only 2 placements possible for S.

NP-Completeness Proof

Suppose ϕ preserves all $|E|$ edges.
\Longrightarrow
$C(x)$ placed in a single column.

NP-Completeness Proof

Suppose ϕ preserves all $|E|$ edges.
\Longrightarrow
ϕ yields a valid 3-partition of X.

Algorithms for preserving adjacencies

- Use an Maximum Common Subgraph algorithm. For example mcgregor1982backtrack's algorithm.

Algorithms for preserving adjacencies

- Use an Maximum Common Subgraph algorithm. For example mcgregor1982backtrack's algorithm. \Longrightarrow Too slow!

Algorithms for preserving adjacencies

- Use an Maximum Common Subgraph algorithm. For example mcgregor1982backtrack's algorithm. \Longrightarrow Too slow!
- Approximate.

Algorithms for preserving adjacencies

- Use an Maximum Common Subgraph algorithm. For example mcgregor1982backtrack's algorithm. \Longrightarrow Too slow!
- Approximate.

Problem: kann1992approximability shows a lot of MAXIMUM Sommon Subgraph problems are NP-hard to approximate.

Algorithms for preserving adjacencies

- Use an Maximum Common Subgraph algorithm. For example mcgregor1982backtrack's algorithm. \Longrightarrow Too slow!
- Approximate.

Problem: kann1992approximability shows a lot of MAXIMUM Sommon Subgraph problems are NP-hard to approximate.

We designed a 4-approximation algorithm to embed a planar graph into a grid graph.

Finding the "best" matching

The matching ϕ should:

- minimise the total distance,
- preserve the directional relation, and

- preserve adjacencies

To get the best matching we allow translation and scaling of the pointset A.

Approximating directional relations

Algorithm DirRel-Preserve
(1) Let $w(a, b)$ denote the number of pairs involving a with the wrong directional relation if we match a to b.
(2) Compute a minimal distance matching using w as distance measure.

Approximating directional relations

Algorithm DirRel-Preserve
(1) Let $w(a, b)$ denote the number of pairs involving a with the wrong directional relation if we match a to b.
(2) Compute a minimal distance matching using w as distance measure.

Conjecture

DIRREL-PRESERVE is a 4-approximation algorithm.

Results for different measures

L1_trans

L22

L1_scale

adjacency

Results for different measures

L1_scale

L22

adjacency

Results for different grid sizes

16×6

6×16

24×4

Results for different grid sizes

Results for different grid sizes

2×48

Frank Staals

Examples

U.S. Presidential Elections 2008

$\square 1$ electoral vote

- McCain
- Obama
- other

Examples

U.S. Population estimates in 2009 per race

Future Work

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?

Future Work

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?

Future Work

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?
- . .

Future Work

- Directional Relations proof
- How to optimise all three criteria?
- How to pick a suitable set of grid cells?
- ...

Thank you! Questions?

References I

