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Visualising Geographic Data
Given a map with n regions we want to visualise some data
for each region.

Idea: Use a Grid Map

I London BikeGrid: gicentre.org/bikegrid

I OD Maps [Slingsby, Kelly, Dykes, Wood]

based on Spatial Tree Maps [Dykes,Wood]
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Optimisation criteria:

I Location
I Adjacency
I Relative orientation

1-to-1 Point Set Matching Problem

Regions ; set of blue points A.

Goal: find the best matching φ : A→ B

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Grid cells ; set of red points B. NP-Hard



Optimising Location

Minimize the sum of the L1-distances between matched
points

where d(a, b) = |ax − bx |+ |ay − by |.

DI (φ) =
∑
a∈A

d(a,φ(a))

We want to find a matching φ∗ that minimises



Optimising Location

We want to find a matching φ∗, translation t∗, and scaling
λ∗ that minimise

D(φ, t,λ) =
∑
a∈A

d(λa + t,φ(a)).

where d(a, b) = |ax − bx |+ |ay − by |.

Minimize the sum of the L1-distances between matched
points under translation and scaling.
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Lemma 1. For any matching φ, there is a t that
x-aligns A and B and minimises DT (φ, ·).

Translation only

Aligning A and B decreases DT



Minimising DT

There is an optimal matching at an x-alignment.

Same trick for y -alignment.
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Minimising DT

There is an optimal matching at an x-alignment.

There is an optimal matching at an x- and y -alignment.

Same trick for y -alignment.

=⇒ There are at most n4 such alignments.

Theorem 1. A φ∗ and t∗ that minimise DT can be
computed in O(n4 · n2 log3 n) = O(n6 log3 n) time.

Uses the matching algorithm by Vaidya (1988)



Minimising DΛ and D

Minimum distance matching under scaling?

Use exactly the same approach.
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Minimising DΛ and D

Minimum distance matching under scaling?

Minimum distance matching under translation and scaling?

Use exactly the same approach.

Same idea: x-align (y -align) two pairs of points.

Theorem 2. A φ∗, t∗, and λ∗ that minimise D can be
computed in O(n8 · n2 log3 n) = O(n10 log3 n) time.
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Maximize the number of pairs with the right orientation.
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Preserving directional relations

a1

a2
φ(a2)

φ(a1)

NE

Minimize the number of pairs with the wrong orientation.

W (φ) = |{(a1, a2) | (a1, a2) ∈ A× A ∧
dir(a1, a2) 6= dir(φ(a1),φ(a2))}|.

Translation and scaling do not influence W .

NE



Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

A 4-approximation algorithm
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x-rankP(p) = 3

P

p
y -rankP(p) = 4

A 4-approximation algorithm
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w(a, b) is the L1-distance in terms of ranks.



Compute a minimum distance matching with distance
measure

w(a, b) = |x-rankA(a)− x-rankB(b)| +

|y -rankA(a)− y -rankB(b)|.

So compute an optimal matching using Vaidya’s
Algorithm.

A 4-approximation algorithm

w(a, b) is the L1-distance in terms of ranks.

Theorem 3. A 4-approximation for minimising W can be
computed in O(n2 log3 n).
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Evaluation: We compare with spatial tree maps [Wood &
Dykes], and minimizing the L2

2 distance [Cohen & Guibas]
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Results

WL1

L2
2SG [Wood and Dykes]

Dir. Rel. Adj.

SG 88% 69%
L1 96% 76%
W 97% 82%
L2

2 98% 81%

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

SpatialGrid 4545 3592 300482 2008 89.01% 77 73.33%
I 4035 3342 311327 2024 89.72% 79 75.24%
L1 2838 2355 166060 2046 90.69% 78 74.29%
W 4221 3352 273273 2098 93.00% 79 75.24%

L2
2 2929 2260 139110 2096 92.91% 83 79.05%

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

I 2897 2296 182257 1040 98.48% 59 72.84%
L1 2803 2286 200593 1008 95.45% 54 66.67%
W 2936 2277 177927 1042 98.67% 61 75.31%

L2
2 2890 2228 172089 1042 98.67% 61 75.31%
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Results for the United States and the
London Boroughs are in the paper.
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Thank you!

Concluding Remarks & Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?
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Inversions vs Directions

b1

b2

a1

a2

southwest

southeast

x-rankA(a1) < x-rankA(a2) and
x-rankB(b1) > x-rankB(b2)

(a1, a2) is an inversion.

(a1, a2) is an out-of-order pair
m

So W (φ) = #inversions = I (φ).


