Impr	roved	Grid	Map L	ayout	: by	
	Poin	t Set	Matcl	ning		
David I	Eppstein		Marc v	an Kreve	ld	
Bettina S	peckman	n	Fran	k Staals		

University of California, Irvine, Utrecht University, TU Eindhoven

Given a map with *n* regions we want to visualise some data for each region.

Given a map with *n* regions we want to visualise some data for each region. e.g. US Presidential Elections

Problem: Visual Clutter

Given a map with *n* regions we want to visualise some data for each region.

Idea: Use a Grid Map

Given a map with *n* regions we want to visualise some data for each region.

Idea: Use a Grid Map

London BikeGrid: gicentre.org/bikegrid

Given a map with *n* regions we want to visualise some data for each region.

Idea: Use a Grid Map

London BikeGrid: gicentre.org/bikegrid
 OD Maps [Slingsby, Kelly, Dykes, Wood]
 based on Spatial Tree Maps [Dykes,Wood]

How do we assign the grid cells to the regions?

Tasks:

- ► Locate a cell
- Compare different cells
- Look for spatial patterns

How do we assign the grid cells to the regions?

Tasks:

- ► Locate a cell
- Compare different cells
- Look for spatial patterns

Optimisation criteria:

- Location
- Adjacency
- Relative orientation

How do we assign the grid cells to the regions?

Tasks:

- Locate a cell
- Compare different cells
- Look for spatial patterns

Optimisation criteria:

- Location
- Adjacency NP-Hard
 - Relative orientation

How do we assign the grid cells to the regions?

1-to-1 Point Set Matching Problem Regions \rightsquigarrow set of blue points A. Grid cells \rightsquigarrow set of red points B. Optimisation criteria:

- Location
- Adjacency NP-Hard
 Relative orientation

Goal: find the best matching $\phi : A \rightarrow B$

Optimising Location

Minimize the sum of the L_1 -distances between matched points

We want to find a matching ϕ^* that minimises

$$D_I(\phi) = \sum_{a \in A} d(a, \phi(a))$$

where $d(a, b) = |a_x - b_x| + |a_y - b_y|$.

Optimising Location

Minimize the sum of the L_1 -distances between matched points under translation and scaling.

We want to find a matching ϕ^* , translation t^* , and scaling λ^* that minimise

$$D(\phi, t, \lambda) = \sum_{a \in A} d(\lambda a + t, \phi(a)).$$

where $d(a, b) = |a_x - b_x| + |a_y - b_y|$.

Aligning A and B decreases D_T

Lemma 1. For any matching ϕ , there is a t that x-aligns A and B and minimises $D_{\mathcal{T}}(\phi, \cdot)$.

There is an optimal matching at an x-alignment.

Same trick for *y*-alignment.

There is an optimal matching at an *x*-alignment.

Same trick for *y*-alignment.

There is an optimal matching at an x- and y-alignment.

 \implies There are at most n^4 such alignments.

Minimising $D_{\mathcal{T}}$

There is an optimal matching at an x-alignment.

Same trick for *y*-alignment.

There is an optimal matching at an x- and y-alignment.

 \implies There are at most n^4 such alignments.

Theorem 1. A ϕ^* and t^* that minimise D_T can be computed in $O(n^4 \cdot n^2 \log^3 n) = O(n^6 \log^3 n)$ time.

Uses the matching algorithm by Vaidya (1988)

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.

Minimum distance matching under scaling?

Use exactly the same approach.

Minimum distance matching under translation and scaling?

Same idea: x-align (y-align) two pairs of points.

Theorem 2. A ϕ^* , t^* , and λ^* that minimise D can be computed in $O(n^8 \cdot n^2 \log^3 n) = O(n^{10} \log^3 n)$ time.

Maximize the number of pairs with the right orientation.

Minimize the number of pairs with the wrong orientation.

out-of-order pairs

 $W(\phi) = |\{(a_1, a_2) \mid (a_1, a_2) \in A \times A \land dir(a_1, a_2) \neq dir(\phi(a_1), \phi(a_2))\}|.$

Minimize the number of pairs with the wrong orientation.

out-of-order pairs

$$W(\phi) = |\{(a_1, a_2) \mid (a_1, a_2) \in A \times A \land dir(a_1, a_2) \neq dir(\phi(a_1), \phi(a_2))\}|.$$

Translation and scaling do not influence W.

Compute a minimum distance matching with distance measure

$$w(a, b) = |x - rank_A(a) - x - rank_B(b)| + |y - rank_A(a) - y - rank_B(b)|.$$

Compute a minimum distance matching with distance measure

$$w(a, b) = |x - rank_A(a) - x - rank_B(b)| + |y - rank_A(a) - y - rank_B(b)|.$$

Compute a minimum distance matching with distance measure

$$w(a, b) = |x - rank_A(a) - x - rank_B(b)| + |y - rank_A(a) - y - rank_B(b)|.$$

w(a, b) is the L_1 -distance in terms of ranks.

Compute a minimum distance matching with distance measure

$$w(a, b) = |x - rank_A(a) - x - rank_B(b)| + |y - rank_A(a) - y - rank_B(b)|.$$

w(a, b) is the L_1 -distance in terms of ranks.

So compute an optimal matching using Vaidya's Algorithm.

Theorem 3. A 4-approximation for minimising W can be computed in $O(n^2 \log^3 n)$.

Implementation & Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L_2^2 distance [Cohen & Guibas]

Implementation & Evaluation

Implementation: **Easy**; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L_2^2 distance [Cohen & Guibas]

Quantitative

- ♦ distance
- # and % preserved directional relations
- # and % preserved adjacencies
- Qualitative

Implementation & Evaluation

Implementation: **Easy**; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood & Dykes], and minimizing the L_2^2 distance [Cohen & Guibas]

Quantitative

- ♦ distance
- # and % preserved directional relations
- # and % preserved adjacencies
- Qualitative

Results

	Dir. Rel.	Adj.
SG	88%	69%
L_1	96%	76%
W	97%	82%
L_{2}^{2}	98%	81%

	Resi	ults												
	VA MT ND MN MI NY NH ME OR ID SD WI IN PA VT MA NV WY NE IA IL OH CT RI CA CO KS MO KY WV MD VA UT NM OK AR TN SC NJ NC AZ TX LA MS AL GA DE FL	ID ND MN IL OH WA MT SD WI MI OR WY NE IA IN NV CO KS MO KY QA UT OK AR AL XZ NM TX LA MS QR WY SD IA MI QR WY SD IA MI ID UT NE IL OH NV CO KS MO IN MI QR WY SD IA MI MI QR WY SD IA MI MI	VTMERIWANYMHMAORPAJJCTNVWWMDDECOTNNCVAAZFLGASCCAVWMARIQRNYMHMEMANYNHCINVVANIRIQRDEPACTNVWWVANJUTKYNCMDCAGASCFLAZ	MT ND MN WI ID WY SD MI UT NE IA IN WT IA IA IA MT IA IA IA MS MO IA IA MT AR MS AL NM TA IA FL MT ND MN WI ID SD IA MI MT ND MN WI ID SD IA MI VY NE IA MI QU NE IA MI ID SD IA MI QU NE IA MI QU NE IA MI QU NA AR AR QU IA IA IA QU IA IA IA ID IA IA<	VTNHMENYPAMAOHMDCTWVVARITNNCNJGASCDENYVTMEPANHMAOHCTRIWVMDNJSCVADEGAFLNC						W		L2	
	Method Dis	L_2 L_2^2	Directional Rel. # %	Adjac #	encies %	Method	1.	Distance	12	Directio	onal Rel.	Adjace	ncies	
-	$\begin{array}{ccccc} {\sf SpatialGrid} & {\sf 4545} & {\sf 33}\\ {\sf I} & {\sf 4035} & {\sf 33}\\ {\sf L}_1 & {\sf 2838} & {\sf 22}\\ {\sf W} & {\sf 4221} & {\sf 33}\\ {\sf L}_2^2 & {\sf 2929} & {\sf 23}\\ \end{array}$	3592 300482 3342 311327 3355 166060 3352 273273 2260 139110	2008 8 2024 8 2046 9 2098 9 2096 9	9.01% 77 19.72% 79 0.66% 78 13.00% 79 12.91% 83	73.33% 75.24% 74.29% 75.24% 79.05%	$\begin{matrix} l \\ L_1 \\ W \\ L_2^2 \end{matrix}$	2897 2803 2936 2890	2296 2286 2277 2228	182257 200593 177927 172089	77 1040 1008 1042 1042	98.48% 95.45% 98.67% 98.67%	77 59 54 61 61	72.84% 66.67% 75.31% 75.31%	

Results for the United States and the London Boroughs are in the paper.

 L_1

W

Our method works for arbitrary point sets.

Our method works for arbitrary point sets.

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Our method works for arbitrary point sets.

Inversions vs Directions

x- $rank_A(a_1) < x$ - $rank_A(a_2)$ and x- $rank_B(b_1) > x$ - $rank_B(b_2)$

 (a_1, a_2) is an inversion.

Inversions vs Directions

$$x$$
- $rank_A(a_1) < x$ - $rank_A(a_2)$ and x - $rank_B(b_1) > x$ - $rank_B(b_2)$

 (a_1, a_2) is an inversion. (a_1, a_2) is an out-of-order pair

Inversions vs Directions

$$x$$
- $rank_A(a_1) < x$ - $rank_A(a_2)$ and x - $rank_B(b_1) > x$ - $rank_B(b_2)$

 (a_1, a_2) is an inversion. (a_1, a_2) is an out-of-order pair So $W(\phi) = \#$ inversions $= I(\phi)$.