

University of California, Irvine, Utrecht University, TU Eindhoven

Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region. e.g. US Presidential Elections

Problem: Visual Clutter

Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a Grid Map

Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a Grid Map

- London BikeGrid: gicentre.org/bikegrid

Visualising Geographic Data

Given a map with n regions we want to visualise some data for each region.

Idea: Use a Grid Map

- London BikeGrid: gicentre.org/bikegrid
- OD Maps [Slingsby, Kelly, Dykes, Wood] based on Spatial Tree Maps [Dykes,Wood]

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:

- Locate a cell
- Compare different cells
- Look for spatial patterns

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Assigning Cells to Regions

How do we assign the grid cells to the regions?

Tasks:

- Locate a cell
- Compare different cells
- Look for spatial patterns

Optimisation criteria:

- Location
\rightarrow Adjacency NP-Hard
- Relative orientation

Assigning Cells to Regions

How do we assign the grid cells to the regions?

1-to-1 Point Set Matching Problem
Regions \leadsto set of blue points A.
Grid cells \leadsto set of red points B.

Optimisation criteria:

- Location
\rightarrow Adjancy NP-Hard
- Relative orientation

Goal: find the best matching $\phi: A \rightarrow B$

Optimising Location

Minimize the sum of the L_{1}-distances between matched points

We want to find a matching ϕ^{*} that minimises

$$
D_{l}(\phi)=\sum_{a \in A} d(a, \phi(a))
$$

where $d(a, b)=\left|a_{x}-b_{x}\right|+\left|a_{y}-b_{y}\right|$.

Optimising Location

Minimize the sum of the L_{1}-distances between matched points under translation and scaling.

We want to find a matching ϕ^{*}, translation t^{*}, and scaling λ^{*} that minimise

$$
D(\phi, t, \lambda)=\sum_{a \in A} d(\lambda a+t, \phi(a)) .
$$

where $d(a, b)=\left|a_{x}-b_{x}\right|+\left|a_{y}-b_{y}\right|$.

Translation only

Translation only

Translation only

Translation only

Aligning A and B decreases $D_{\mathcal{T}}$
Lemma 1. For any matching ϕ, there is a t that x-aligns A and B and minimises $D_{\mathcal{T}}(\phi, \cdot)$.

Minimising $D_{\mathcal{T}}$

There is an optimal matching at an x-alignment.
Same trick for y-alignment.

Minimising $D_{\mathcal{T}}$

There is an optimal matching at an x-alignment.
Same trick for y-alignment.
There is an optimal matching at an x - and y-alignment.
\Longrightarrow There are at most n^{4} such alignments.

Minimising $D_{\mathcal{T}}$

There is an optimal matching at an x-alignment.
Same trick for y-alignment.
There is an optimal matching at an x - and y-alignment.
\Longrightarrow There are at most n^{4} such alignments.

Theorem 1. $A \phi^{*}$ and t^{*} that minimise $D_{\mathcal{T}}$ can be computed in $O\left(n^{4} \cdot n^{2} \log ^{3} n\right)=O\left(n^{6} \log ^{3} n\right)$ time.

Uses the matching algorithm by Vaidya (1988)

Minimising D_{Λ} and D

Minimum distance matching under scaling?

Use exactly the same approach.

Minimising D_{Λ} and D

Minimum distance matching under scaling?
Use exactly the same approach.
Minimum distance matching under translation and scaling?

Minimising D_{\wedge} and D

Minimum distance matching under scaling?
Use exactly the same approach.
Minimum distance matching under translation and scaling?
Same idea: x-align (y-align) two pairs of points.

Minimising D_{Λ} and D

Minimum distance matching under scaling?
Use exactly the same approach.
Minimum distance matching under translation and scaling?
Same idea: x-align (y-align) two pairs of points.
Theorem 2. $A \phi^{*}, t^{*}$, and λ^{*} that minimise D can be computed in $O\left(n^{8} \cdot n^{2} \log ^{3} n\right)=O\left(n^{10} \log ^{3} n\right)$ time.

Preserving directional relations

Preserving directional relations

Preserving directional relations

Maximize the number of pairs with the right orientation.

Preserving directional relations

Minimize the number of pairs with the wrong orientation. out-of-order pairs

$$
\begin{aligned}
& W(\phi)=\mid\left\{\left(a_{1}, a_{2}\right) \mid\left(a_{1}, a_{2}\right) \in A \times A \wedge\right. \\
& \left.\operatorname{dir}\left(a_{1}, a_{2}\right) \neq \operatorname{dir}\left(\phi\left(a_{1}\right), \phi\left(a_{2}\right)\right)\right\} \mid .
\end{aligned}
$$

Preserving directional relations

Minimize the number of pairs with the wrong orientation. out-of-order pairs

$$
\begin{aligned}
& W(\phi)=\mid\left\{\left(a_{1}, a_{2}\right) \mid\left(a_{1}, a_{2}\right) \in A \times A \wedge\right. \\
& \left.\quad \operatorname{dir}\left(a_{1}, a_{2}\right) \neq \operatorname{dir}\left(\phi\left(a_{1}\right), \phi\left(a_{2}\right)\right)\right\} \mid .
\end{aligned}
$$

Translation and scaling do not influence W.

A 4-approximation algorithm

Compute a minimum distance matching with distance measure

$$
\begin{aligned}
w(a, b)= & \left|x-\operatorname{rank}_{A}(a)-x-\operatorname{rank}_{B}(b)\right|+ \\
& \left|y-\operatorname{rank}_{A}(a)-y-\operatorname{rank}_{B}(b)\right| .
\end{aligned}
$$

A 4-approximation algorithm
Compute a minimum distance matching with distance measure

$$
\begin{aligned}
w(a, b)= & \left|x-\operatorname{rank}_{A}(a)-x-\operatorname{rank}_{B}(b)\right|+ \\
& \left|y-\operatorname{rank}_{A}(a)-y-\operatorname{rank}_{B}(b)\right| .
\end{aligned}
$$

P

$$
\begin{aligned}
& x-\operatorname{rank}_{P}(p)=3 \\
& y-\operatorname{rank}_{P}(p)=4
\end{aligned}
$$

A 4-approximation algorithm

Compute a minimum distance matching with distance measure

$$
\begin{aligned}
w(a, b)= & \left|x-\operatorname{rank}_{A}(a)-x-\operatorname{rank}_{B}(b)\right|+ \\
& \left|y-\operatorname{rank}_{A}(a)-y-\operatorname{rank}_{B}(b)\right| .
\end{aligned}
$$

$w(a, b)$ is the L_{1}-distance in terms of ranks.

A 4-approximation algorithm

Compute a minimum distance matching with distance measure

$$
\begin{aligned}
w(a, b)= & \left|x-\operatorname{rank}_{A}(a)-x-\operatorname{rank}_{B}(b)\right|+ \\
& \left|y-\operatorname{rank}_{A}(a)-y-\operatorname{rank}_{B}(b)\right| .
\end{aligned}
$$

$w(a, b)$ is the L_{1}-distance in terms of ranks.
So compute an optimal matching using Vaidya's Algorithm.

Theorem 3. A 4-approximation for minimising W can be computed in $O\left(n^{2} \log ^{3} n\right)$.

Implementation \& Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood \& Dykes], and minimizing the L_{2}^{2} distance [Cohen \& Guibas]

Implementation \& Evaluation

Implementation: Easy; we only need an LP-solver.
Evaluation: We compare with spatial tree maps [Wood \& Dykes], and minimizing the L_{2}^{2} distance [Cohen \& Guibas]

- Quantitative
- distance
- \# and \% preserved directional relations
- \# and \% preserved adjacencies
- Qualitative

Implementation \& Evaluation

Implementation: Easy; we only need an LP-solver.

Evaluation: We compare with spatial tree maps [Wood \& Dykes], and minimizing the L_{2}^{2} distance [Cohen \& Guibas]

- Quantitative
- distance
- \# and \% preserved directional relations
- \# and \% preserved adjacencies
- Qualitative

Results

$$
L_{2}^{2}
$$

Dir. Rel. Adj.

SG	88%	69%
L_{1}	96%	76%
W	97%	82%
L_{2}^{2}	98%	81%

W

Results

Concluding Remarks \& Future Work

Our method works for arbitrary point sets.

Concluding Remarks \& Future Work

Our method works for arbitrary point sets.

Concluding Remarks \& Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?

Concluding Remarks \& Future Work

Our method works for arbitrary point sets.

Future work: How to find cells (not) to use?
Thank you!

Inversions vs Directions

$x-\operatorname{rank}_{A}\left(a_{1}\right)<x-\operatorname{rank}_{A}\left(a_{2}\right)$ and $x-\operatorname{rank}_{B}\left(b_{1}\right)>x-\operatorname{rank}_{B}\left(b_{2}\right)$
$\left(a_{1}, a_{2}\right)$ is an inversion.

Inversions vs Directions

$x-\operatorname{rank}_{A}\left(a_{1}\right)<x-\operatorname{rank}_{A}\left(a_{2}\right)$ and $x-\operatorname{rank}_{B}\left(b_{1}\right)>x-\operatorname{rank}_{B}\left(b_{2}\right)$
$\left(a_{1}, a_{2}\right)$ is an inversion.
I
$\left(a_{1}, a_{2}\right)$ is an out-of-order pair

Inversions vs Directions

$x-\operatorname{rank}_{A}\left(a_{1}\right)<x-\operatorname{rank}_{A}\left(a_{2}\right)$ and $x-\operatorname{rank}_{B}\left(b_{1}\right)>x-\operatorname{rank}_{B}\left(b_{2}\right)$
$\left(a_{1}, a_{2}\right)$ is an inversion.
I
$\left(a_{1}, a_{2}\right)$ is an out-of-order pair
So $W(\phi)=\#$ inversions $=I(\phi)$.

