

Given: *P*: simple polygon

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

Problem: store *S* s.t. we can

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

Problem: store *S* s.t. we can insert a site,

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

Problem: store *S* s.t. we can insert a site, delete a site,

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

Problem: store *S* s.t. we can insert a site, delete a site, find the site $s \in S$ closest to a query point *q*

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

Problem: store *S* s.t. we can insert a site, delete a site, find the site $s \in S$ closest to a query point *q* we measure the **geodesic** distance between *s* and *q*

Euclidean Dynamic NN Searching

Given: S: dynamic set of *n* point sites in \mathbb{R}^2

Problem: store *S* s.t. we can insert a site, delete a site, find the site $s \in S$ closest to a query point *q*

Euclidean Dynamic NN Searching

Given: S: dynamic set of *n* point sites in \mathbb{R}^2

Problem: store *S* s.t. we can insert a site, delete a site, find the site $s \in S$ closest to a query point *q* [Chan, JACM '10], [Kaplan et al., SODA '17]

What's the Problem?

Obs: Nearest Neighbor Searching is a **decomposable search problem**

split S into $O(\sqrt{n})$ groups of size $O(\sqrt{n})$,buildVoronoi diagram for each

query $O(\sqrt{n} \log n)$

update $O(\sqrt{n} \log n)$

What's the Problem?

Obs: Nearest Neighbor Searching is a **decomposable search problem**

split *S* into $O(\sqrt{n})$ groups of size $O(\sqrt{n})$, build geodesic Voronoi diagram for each

query $O(\sqrt{n}\log(n+m))$ update $O((\sqrt{n}+m)\log(n+m))$

Problem: geodesic Voronoi Diagram has size $\Theta(n + m)$

 $n = \max \#$ sites in Sm =complexity P

What's the Problem?

Obs: Nearest Neighbor Searching is a **decomposable search problem**

split *S* into $O(\sqrt{n})$ groups of size $O(\sqrt{n})$, build geodesic Voronoi diagram for each

query $O(\sqrt{n}\log(n+m))$ update $O(\sqrt{n}\log n\log^2 m)$ [Oh & Ahn, SoCG '17]

Problem: geodesic Voronoi Diagram has size $\Theta(n + m)$

 $n = \max \#$ sites in Sm =complexity P

Results

P: simple polygon, *S*: dynamic set of point sites inside *P* Given:

The data structure supports:

 $\left. \begin{array}{c} O(\log^{7}(n+m)) \\ O(\log^{9}(n+m)) \end{array} \right\} \text{ expected, amortized}$ insert delete $O(\log^4(n+m))$ query $n = \max \#$ sites in S m = complexity P

expected space: $O(m + n \log^3 n \log m)$

Results

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P* sequence of updates

The data structure supports:

insert

delete

query

 $\left.\begin{array}{l}
O(\log^4(n+m))\\
O(\log^4(n+m))\\
O(\log^4(n+m))
\end{array}\right\} \text{ amortized}$

 $n = \max \#$ sites in S

m = complexity P

space: $O(m + n \log n \log m)$

Results

Given: *P*: simple polygon, *S*: dynamic set of point sites inside *P*

The data structure supports:

insert

 $O(\log^4(n + m))$ amortized

 $O(\log^4(n+m))$

query space: $O(m + n \log m)$

 $n = \max \#$ sites in Sm =complexity P

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions *F*

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions *F*

Strategy in the Kaplan et al. approach:

- 1. Consider lower envelope of distance functions *F*
- 2. Design algorithm \mathcal{A} to compute a *k*-shallow cutting $\Lambda_k(F)$

Strategy in the Kaplan et al. approach:

- 1. Consider lower envelope of distance functions F
- 2. Design algorithm \mathcal{A} to compute a *k*-shallow cutting $\Lambda_k(F)$

 $\Lambda_k(F)$ = collection of few disjoint **prisms** each prism has O(1) complexity intersects O(k) functions

Strategy in the Kaplan et al. approach:

- 1. Consider lower envelope of distance functions F
- 2. Design algorithm \mathcal{A} to compute a *k*-shallow cutting $\Lambda_k(F)$

 $\Lambda_k(F)$ = collection of few disjoint **prisms** each prism has O(1) complexity intersects O(k) functions

Strategy in the Kaplan et al. approach:

1. Consider lower envelope of distance functions *F* 2. Design algorithm \mathcal{A} to compute a *k*-shallow cutting $\Lambda_k(F)$ $\Lambda_k(F) = \text{collection of few}$ disjoint **prisms** each prism has O(1) complexity intersects O(k) functions that together cover the $\leq k$ -level $L_{\leq k}(F)$

Strategy in the Kaplan et al. approach:

- 1. Consider lower envelope of distance functions F
- 2. Design algorithm \mathcal{A} to compute a *k*-shallow cutting $\Lambda_k(F)$
 - $\Lambda_k(F)$ = collection of few ($O(n/k) \log^c n$) disjoint **prisms** each prism has O(1) complexity intersects O(k) functions

that together cover the $\leq k$ -level $L_{\leq k}(F)$

Strategy in the Kaplan et al. approach:

- 1. Consider lower envelope of distance functions *F*
- 2. Design algorithm \mathcal{A} to compute a k-shallow cutting $\Lambda_k(F)$
 - $\Lambda_k(F)$ = collection of few ($O(n/k) \log^c n$) disjoint **prisms**

each prism has *O*(1) complexity

intersects O(k) functions

that together cover the $\leq k$ -level $L_{\leq k}(F)$

3. Use ${\mathcal A}$ to construct a data structure.

3. Use ${\mathcal A}$ to construct a data structure.

3. Use ${\mathcal A}$ to construct a data structure.

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$
- 3. Prove that $L_t(R)$ lies between $L_k(F)$ and $L_{k(1+\varepsilon)}(F)$

and that it has low complexity

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$
- 3. Prove that $L_t(R)$ lies between $L_k(F)$ and $L_{k(1+\varepsilon)}(F)$

and that it has low complexity

4. Turn $L_t(R)$ into a k-shallow cutting $\Lambda_k(F)$

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$
- 3. Prove that $L_t(R)$ lies between $L_k(F)$ and $L_{k(1+\varepsilon)}(F)$

and that it has low complexity

4. Turn $L_t(R)$ into a k-shallow cutting $\Lambda_k(F)$

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$
- 3. Prove that $L_t(R)$ lies between $L_k(F)$ and $L_{k(1+\varepsilon)}(F)$

and that it has low complexity

4. Turn $L_t(R)$ into a k-shallow cutting $\Lambda_k(F)$

- 1. Take a random sample $R \subseteq F$
- 2. Construct the *t*-level $L_t(R)$
- 3. Prove that $L_t(R)$ lies between $L_k(F)$ and $L_{k(1+\varepsilon)}(F)$ and that it has low complexity
- 4. Turn $L_t(R)$ into a k-shallow cutting $\Lambda_k(F)$
- 5. For each $\nabla \in \Lambda_k(F)$, compute **conflict list** F_{∇}

Obs. $L_k(F) \approx k^{\text{th}}$ order Voronoi Diagram $\mathcal{V}_k(S)$

Thm. Geodesic $V_k(S)$ has O(kn) vertices of degree 1 or 3 O(km) vertices of degree 2

[Liu et al., SODA '13]

Thm. Geodesic $V_k(S)$ has O(kn) vertices of degree 1 or 3 O(km) vertices of degree 2

[Liu et al., SODA '13]

Main Idea: Store locations of only degree 1 or 3 vertices + topology $V_k(S)$

Thm. Geodesic $V_k(S)$ has O(kn) vertices of degree 1 or 3 O(km) vertices of degree 2

[Liu et al., SODA '13]

Main Idea: Store locations of only degree 1 or 3 vertices + topology $V_k(S)$

Thm. $\mathcal{V}_k(S)$ can be represented using O(kn) space, and s.t. all regions are **pseudo trapezoids**

Thm. $\mathcal{V}_k(S)$ can be represented using O(kn) space, and s.t. all regions are **pseudo trapezoids**

Thm. $\mathcal{V}_k(S)$ can be represented using O(kn) space, and s.t. all regions are **pseudo trapezoids**

 $\mathcal{V}_k(S)$ can be computed in $O(k^2 n \log^3(n + m))$ time

Thm. $\mathcal{V}_k(S)$ can be represented using O(kn) space, and s.t. all regions are **pseudo trapezoids**

 $\mathcal{V}_k(S)$ can be computed in $O(k^2 n \log^3(n + m))$ time finding the region $\nabla \ni q$ takes $O(\log(n + m))$ time.

Thm. $L_k(F)$ can be represented using O(kn) space

 $L_k(F)$ can be computed in $O(k^2 n \log^3(n + m))$ time finding the region $\nabla \ni q$ takes $O(\log(n + m))$ time.

Thm. $L_k(F)$ can be represented using O(kn) space

 $L_k(F)$ can be computed in $O(k^2 n \log^3(n + m))$ time finding the region $\nabla \ni q$ takes $O(\log(n + m))$ time.

Thm. $L_k(F)$ can be represented using O(kn) space

 $L_k(F)$ can be computed in $O(k^2 n \log^3(n + m))$ time finding the region $\nabla \ni q$ takes $O(\log(n + m))$ time.

Representing a Shallow Cutting

Representing a Shallow Cutting

Problem 1: How to prove that a **pseudo prism** ∇ intersects O(k) functions?

Representing a Shallow Cutting

Problem 1: How to prove that a **pseudo prism** ∇ intersects O(k) functions?

Problem 2: How to compute F_{∇} ?

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Lemma. *t* conflicts with $\nabla \iff t$ conflicts with a corner of ∇

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Lemma. *t* conflicts with $\nabla \iff t$ conflicts with a corner of ∇

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Lemma. *t* conflicts with $\nabla \iff t$ conflicts with a corner of ∇

 $\implies \left| F_{\nabla} \right| = O(k)$

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Thm. $\Lambda(F)$ is a k-shallow cutting of size $O((n/k) \log^2 n)$

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Thm. $\Lambda(F)$ is a k-shallow cutting of size $O((n/k) \log^2 n)$

 $\Lambda(F)$ can be computed in $O((n/k)\log^5(n+m) + n\log^4(n+m))$ time

Main idea: Restrict S to P_{ℓ} and domain to P_r .

Lemma. \exists dynamic DS to maintain $S \cap P_{\ell}$ s.t. NN-queries with $q \in P_r$: updates:

Results

P: simple polygon, *S*: dynamic set of point sites inside *P* Given:

The data structure supports:

 $\left. \begin{array}{c} O(\log^{7}(n+m)) \\ O(\log^{9}(n+m)) \end{array} \right\} \text{ expected, amortized}$ insert delete $O(\log^4(n+m))$ query $n = \max \#$ sites in S m = complexity P

expected space: $O(m + n \log^3 n \log m)$

Question: can we shave some logs?

Question: can we shave some logs?

Question: Is there a $\Lambda_k(F)$ on the full polygon *P*?

- **Question:** can we shave some logs?
- **Question:** Is there a $\Lambda_k(F)$ on the full polygon P?
- **Question:** How about polygons with holes?

- **Question:** can we shave some logs?
- **Question:** Is there a $\Lambda_k(F)$ on the full polygon *P*?
- **Question:** How about polygons with holes? or terrains?

- **Question:** can we shave some logs?
- **Question:** Is there a $\Lambda_k(F)$ on the full polygon *P*?
- **Question:** How about polygons with holes? or terrains?

Thank You!

Obs. Let S_{ℓ} be k sites in P_{ℓ} . The geodesic VD $VD(S_{\ell})$ in P_r is a forest with O(k) degree 1 and 3 vertices

Obs. Let S_{ℓ} be k sites in P_{ℓ} . The geodesic VD $VD(S_{\ell})$ in P_r is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

Obs. Let S_{ℓ} be k sites in P_{ℓ} . The geodesic VD $VD(S_{\ell})$ in P_r is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

Obs. Let S_{ℓ} be k sites in P_{ℓ} . The geodesic VD $VD(S_{\ell})$ in P_r is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S) \implies takes $O(k \log^2 m)$ time

Obs. Let S_{ℓ} be k sites in P_{ℓ} . The geodesic VD $VD(S_{\ell})$ in P_r is a forest with O(k) degree 1 and 3 vertices

Main idea: Compute the locations of only those vertices and the topology of VD(S)

 \implies takes $O(k \log^2 m)$ time

we can find $s \in S_{\ell}$ closest to $q \in P_r$ in $O(\log k \log m)$ time.

What about $S_r = S \cap P_r$?

What about $S_r = S \cap P_r$? Recursively partition P_r

What about $S_r = S \cap P_r$? Recursively partition P_r

What if $q \in P_{\ell}$?

What about $S_r = S \cap P_r$? Recursively partition P_r

What if $q \in P_{\ell}$?

Symmetric:

Use $VD(S_r)$ to find closest site in S_r Recursively partition P_ℓ to find closest site in S_ℓ

How to deal with updates?

How to deal with updates?

Map each $s \in S_{\ell}$ to a time interval $I_s = [t_{insert s}, t_{delete s}]$

The Offline Data Structure

How to deal with updates?

The Offline Data Structure

How to deal with updates?

Map each $s \in S_{\ell}$ to a time interval $I_s = [t_{insert s}, t_{delete s}]$ Build $VD(S_u)$ for each uAt query time t, select $O(\log n)$ nodes u, query each $VD(S_u)$.

The Offline Data Structure

How to deal with updates?

Map each $s \in S_{\ell}$ to a time interval $I_s = [t_{insert s}, t_{delete s}]$ Build $VD(S_u)$ for each u

At query time *t*, select $O(\log n)$ nodes *u*, query each $VD(S_u)$.

 $\implies O(\log^4(n + m))$ time amortized updates and queries

