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Abstract. We study continuous analogues of “vitality” for discrete net-
work flows/paths, and consider problems related to placing segment
barriers that have highest impact on a flow/path in a polygonal do-
main. This extends the graph-theoretic notion of “most vital arcs” for
flows/paths to geometric environments. We give hardness results and effi-
cient algorithms for various versions of the problem, (almost) completely
separating hard and polynomially-solvable cases.
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1 Introduction

This paper addresses the following kind of questions:

Given a polygonal domain with an “entry” and an “exit”, where should
one place a given set of “barriers” so as to decrease the maximum entry-
exit flow as much as possible (“flow” version), or to increase the length
of the shortest entry-exit path as much as possible (“path” version)?

Figure 1 illustrates these questions in their simplest form (placing a single barrier
in a simple polygon). We call the solutions to the problems most vital segment
barriers for the flow and the path resp. The name derives from the notion of most
vital arcs in a network – those whose deletion decreases the flow or increases the
length of the shortest path as much as possible. While the graph problems are
well studied [1–4, 16, 18, 22, 27], to our knowledge, geometric versions of locating
“most vital” facilities have not been explored. Throughout the paper, the segment
barriers will be called simply barriers. When several segments are aligned to
form a longer barrier, we call this longer segment a super-barrier. We focus
only on segment barriers because already with segments there are a number of
interesting problem versions, and in principle, any polygonal barrier may be
created from sufficiently many segments; however, our results imply that the
optimal blocking is always attained by gluing the barriers into super-barriers (no
other configuration of segments is most vital).
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Fig. 1. A polygon in which a single barrier is placed to minimize the flow between two
edges of the polygon (left) or lengthen the shortest path between two points (right).

Determining the most vital barriers is related to resilience and critical in-
frastructure protection, as it identifies the most vulnerable spots (“bottlenecks,
weakest links”) in the environment by quantifying how fragile or robust the
flow/path is, how much it can be hurt, in the worst case, due to an adversarial
act. It is thus an example of optimizing from an adversarial point of view: do as
much harm as possible using available budget. In practice, the abstract “bad” and
“good” may swap places, e.g., when the “good guys” build a defense wall, under
constrained resources, to make the “evil” (epidemics, enemy, predator, flood)
reach a treasure as late as possible (for the path version) or in a small amount
(for the flow version). Our problem may also be viewed as a Stackelberg game (in
networks/graphs parlance aka interdiction problems [8, 11, 13, 28, 30], extensively
studied due to its relation to security) where the leader places the blockers and
the follower computes the maximum flow or the shortest path around them.

Our paper also contributes to the plethora of work on uncertain environments
[7, 17, 24]. Motion planning under uncertainty is important, e.g., in computing
aircraft paths: locations of hazardous storm systems and other no-fly zones are
not known precisely in advance, and it is of interest to understand how much the
path or the whole traffic flow may be hurt, in the worst case, if new obstacles
pop up (of course, there are many other ways to model weather uncertainty).

Finally, similar types of problems arise when barriers are installed for managing
the queue to an airline check-in desk or controlling the flow of spectators to an
event entrance.

Taxonomy. Since our input consists of the domain and the barriers, several
problem versions may be defined:

H/h The domain may have an arbitrary number of holes (such versions will be
denoted by H) or a constant number of holes (denoted by h)

B/b There may be arbitrarily many barriers (denoted B) or O(1) barriers in
the input (denoted b)

D/1 The barriers may have different lengths (denoted D) or all have the same
length – w.l.o.g. unit (denoted 1)

Overall, for each of the two problems—flow blocking and path blocking—we
have 8 versions (HBD, HB1, HbD, Hb1, hBD, hB1, hbD, hb1); e.g., flow-hBD is
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Table 1. When the number of holes and barriers exceeds 1, the problem may become
(weakly or strongly) NP-hard. This table shows which combinations of parameters lead
to polynomial or hard problems. The results for Hb1, hbD and hb1 follow directly from
the result for HbD.

HBD HB1 HbD Hb1 hBD hB1 hbD hb1

Path NP-hard weakly NP-hard poly poly weakly NP-hard ? poly poly
Flow NP-hard pseudo-poly poly poly weakly NP-hard poly poly poly

the problem of blocking the flow in a polygonal domain with O(1) holes using
arbitrarily many barriers of different lengths, etc. We allow barriers to intersect
the holes. Depending on the nature of the barriers and the environment, in some
of the envisioned applications these may be impractical (e.g., if a hole is pillar in
the building, a barrier cannot run through it) while in others the assumptions
are natural (e.g., if a hole is a pond near the entrance to an event). From the
theoretical point of view, in most of our problems these assumptions are w.l.o.g.
because in the optimal solution the barriers just touch the holes, not “wasting”
their length inside a hole (one exception is HBD in which the solution may change
if the barriers must avoid the holes).

Overview of the results. Section 3 describes our main technical contribution: a
linear-time algorithm for the fundamental problem of finding one most vital
barrier for the shortest s-t path in a simple polygon. The algorithm is based on
observing that the barrier must be “rooted” at a vertex of the polygon. The main
challenge is thus to trace the locations of the barrier’s “free” endpoint (the one
not touching the polygon boundary) through the overlay of shortest path maps
from s and t. The overlay has quadratic complexity, so instead of building it, we
show that only a linear number of the maps’ cells can be intersected and work
out an efficient way to go through all the cells. Furthermore, we prove that when
placing multiple barriers they can be lined up into a single super-barrier; this
reduces the problem to that of placing one barrier. In the remainder of the paper
we consider polygons with holes. Section 4 shows hardness of the most general
problems flow-HBD and path-HBD, i.e., blocking with multiple different-length
barriers in polygons with (a large number of) holes. We also prove weak hardness
of the versions with small number of holes (flow-hBD and path-hBD). Finally,
we argue that path blocking is weakly hard if the barriers have the same length
(path-HB1). Section 5 presents polynomial-time algorithms for path blocking
with few barriers (path-HbD), implying that path-hbD, path-Hb1 and path-hb1
are also polynomial. The section then describes polynomial-time algorithms
for the remaining versions of flow blocking. We first show that the problem is
pseudopolynomial if the barriers have the same length (flow-HB1). We then prove
that blocking with few barriers (flow-HbD) is strongly polynomial, implying
that flow-hbD, flow-Hb1 and flow-hb1 are also polynomial. Finally, we show
polynomiality of the version with constant number of holes (flow-hB1). Table 1
summarizes the hardness and polynomiality of our results.
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2 Preliminaries

Let P be a polygonal domain with n vertices, and let the source S and the sink
T be two given edges on the outer boundary of P (Fig. 2). A flow in P is a vector
field F : P → R2 with the following properties: divF (p) = 0 ∀p ∈ P (there are
no source/sinks inside the domain), F (p) ·n(p) = 0 ∀p ∈ ∂P \{S∪T} where n(p)
is the unit normal to the boundary of P at point p (the flow enters/exits P only
through the source/sink), and |F (p)| ≤ 1 ∀p ∈ P (the permeability of any point
is 1, i.e., not more than a unit of flow can be pushed through any point—the
flow respects the capacity constraint). Similarly to the discrete network flow,
the value of a continuous flow F is the total flow coming in from the source
(
∫
S
F ·n ds) – since in the interior of P the flow is divergence-free (flow conserves

inside P ), by the divergence theorem, the value is equal to the total flow out
of the sink (−

∫
T
F ·n dt). A cut is a partition of P into 2 parts with S, T

in different parts (analogous to a cut in a network); the capacity of the cut
is the length of the boundary between the parts. Finally, the source and the
sink split the outer boundary of P into two parts called the bottom B and the
top T , and the critical graph of the domain [10] is the complete graph on the
domain’s holes, B and T , whose edge lengths equal to the distances between
their endpoints (we assume that the edges are embedded to connect the closest
points on the corresponding holes, B or T ). The celebrated Flow Decomposition
and MaxFlow/MinCut theorems for network flows have continuous counterparts:
(the support of) a flow decomposes into (thick) paths [25], and the maximum
value of the S-T flow is equal to the capacity of the minimum cut [29]; moreover,
the mincut is defined by the shortest B-T path in the critical graph [21].

For shortest path blocking, the setup is a bit more elaborated. Let s be a
point on the outer boundary of P , and let S∗ be the edge containing s. We
assume that s is actually an infinitesimally small gap s−s+ in the boundary of
P (with s− below s and s+ above), and that the union of the barriers and the
holes is not allowed to contain a path that starts on S∗ below s− and ends on

Bottom, B

Top, T

S T

Fig. 2. Flow setup. An S-T flow decomposed into 3 thick paths (blue); two edges of
the critical graph, defining a cut (dashed).
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Fig. 3. Path setup; barriers are red and s-t path is blue. Surrounding s−s+ (left) is
forbidden, even if no barrier touches the gap. Completely “shutting the door” s−s+

with one barrier (right (a)) is not allowed: if a barrier is at s, it must touch at most
one of s−, s+ (right (b,c)).

S∗ above s+, completely cutting out s (Fig. 3).4 W.l.o.g. we treat s− and s+ as
vertices of P . Similarly, we are given a point t, modeled as a gap t+t− in another
edge T ∗ on the outer boundary of P .

Let SP(p, q) denote a shortest path (a geodesic) between points p and q in
P . Where it creates no confusion, we will identify a path with its length; in
particular, for two points p, q, we will use pq to denote both the segment pq and
its length. The shortest path map from s, denoted SPM(s), is the decomposition
of P into cells such that shortest paths SP(s, p) from s to all points p within a
cell visit the same sequence of vertices of P ; the last vertex in this sequence is
called the root of the cell and is denoted by rs(p). The shortest path map from
t (SPM(t)) and the roots of its cells (rt(p)) are defined analogously. The maps
have linear complexity and can be built in O(n log n) time (in O(n) time if P is
simple) [20]. Our algorithm for path blocking in a simple polygon uses:

Lemma 1. [26, Lemma 1] Let p, q, and r be three points in a simple polygon P .
The geodesic distance from p to a point x ∈ SP(q, r) is a convex function of x.

Finally, let E(u, v, p) denote the ellipse with foci u and v, going through the
point p. It is well known that the sum of distances to the foci is constant along
the ellipse; for the points outside (resp. inside) the ellipse, the sum is larger (resp.
smaller) than up+ pv. It is also well known that the tangent to the ellipse at p is
perpendicular to the bisector of the angle upv (the light from u reaches v after
reflecting from the ellipse at p).

4 Other modeling choices could have been made; e.g, another way to avoid complete
blockage could be to introduce a “protected zone” around s à la in works on geographic
mincut [23]. Also a more generic view, outside our scope, could be to combine the
flow and path problems into considering minimum-cost flows [25, 9] (the shortest
path is the mincost flow of value 0) and explore how the barriers could influence both
the capacity of the domain and the cost of the flow.
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3 Linear-time algorithms for simple polygons

In this section P is a simple polygon. For a set X ⊂ P , let SPX(p, q) denote the
shortest path between points p, q in P \X (and the length of the path), i.e., the
shortest p-q path avoiding X. We first consider finding the most vital unit barrier
for the shortest path, i.e., finding the unit segment ab maximizing SPab(s, t). For
the path blocking, we (re)define the bottom B and top T of P as the t−-s− and
s+-t+ parts of ∂P resp. (which mimics the flow setup, replacing the entrance S
and exit T with s−s+ and t−t+). We will treat s−, s+, t−, and t+ as vertices of P .
We then prove that a most vital barrier is placed at a vertex of P (Section 3.1).
We focus on placing the barrier at (a vertex of) B; placing at T is symmetric. In
Section 3.2 we test whether it is possible for any unit barrier ab touching B to also
touch T (while not lying on S∗ or T ∗): if this is possible, the barrier separates s
from t completely and SPab(s, t) =∞. We test this by computing the Minkowski
sum of B with a unit disk and intersecting the resulting shape with T , taking
special care around s and t (to disallow having ab ⊂ S∗). In Section 3.3 we then
proceed to our main technical contribution: showing how to optimally place a
barrier touching (a vertex of) B given that no such barrier can simultaneously
touch T . For this, we compute the shortest s-t path H around the Minkowski
sum of B with the unit disk and argue that an optimal barrier will have one
endpoint on (a vertex of) B and the other endpoint on H. Furthermore, we show
that this path H intersects edges of the shortest path maps SPM(s) and SPM(t)
only linearly many times. We subdivide H at these intersection points, and show
that for each edge e of H we can then calculate the optimal placement of a point
on e maximizing the sum of distances to s and t. This gives us a linear-time
algorithm for finding a single most vital barrier. In Section 3.4 we then show that
even if we have multiple barriers, it is best to glue the barriers together into a
single super-barrier.

3.1 A most vital barrier is “rooted” at a vertex of P

We start by establishing the following lemma. It’s complete proof can be found
in the full version of this paper [15].

Lemma 2. There exists a most vital barrier ab in which one endpoint, say b,
lies on a vertex of P .

Proof sketch. The main idea is to first show that there is a most vital barrier
that touches ∂P , then that we can shift it to touch ∂P in an endpoint, and finally
that we can shift it along ∂P until it’s endpoint coincides with a vertex.

3.2 Blocking the path from s to t completely

We now argue that we can check in linear time whether it is possible to completely
block passage from s to t, by placing a barrier that connects B to T (without
placing the barrier along S∗ or T ∗, which is forbidden by our model; see Section 2).
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Observation 1. Let u and v be two vertices of SP(s, t) in B. The geodesic makes
a right turn at u if and only if it makes a right turn at v. Let u′ and v′ be two
vertices of SP(s, t) in T . The geodesic makes a left turn at u′ if and only if it
makes a left turn at v′. Moreover, if SP(s, t) makes a right turn in u then it
makes a left turn in u′.

Assume w.l.o.g. that SP(s, t) makes a right turn at a vertex u ∈ B. By
Observation 1 it thus makes right turns at all vertices of SP(s, t) ∩ B, and left
turns at all vertices of SP(s, t) ∩ T .

Observation 2. If SP(s, t) makes a right turn at u ∈ B, and we place a barrier
ur at u, then SPur(s, t) makes a right turn at r.

For every point p on B, consider placing a barrier pq of length at most one,
with one endpoint on p. The possible placements Dp of the other endpoint, q,
form a subset of the unit disk centered at p. Let D =

⋃
p∈BDp denote the union

of all these regions (see Fig. 4).

Observation 3. There is a barrier that separates s from t if and only if s and t
are in different components of P \ D.

We now observe that D is essentially the Minkowski sum of B with a unit disk
D. More specifically, let A⊕B = {a+ b | a ∈ A ∧ b ∈ B} denote the Minkowski
sum of A and B, let S∗B = S∗ ∩ B denote the part of S∗ in B, let S∗T , T ∗B, and
T ∗T be defined analogously, and let B′ = B \ (S∗B ∪ T ∗B).

Lemma 3. We have that D = D′ ∪ XS ∪ XT , where D′ = B′ ⊕ D, XA =
(A∗B ⊕D) \A∗T , and D is the unit disk centered at the origin. Moreover, D can
be computed in O(n) time.

Proof. The equality follows directly from the definition of D and the Minkowski
sum. It then also follows D has linear complexity. So we focus on computing D.
To this end we separately compute D′, XS , and XT , and take their union. More
specifically, we construct the Voronoi diagram of B′ using the algorithm of Chin,
Snoeyink, and Wang [6], and use it to compute B′ ⊕D [14]. Both of these steps
can be done in linear time. Since S∗, T ∗, and D have constant complexity, we
can compute XS and XT in constant time. The resulting sets still have constant
complexity, so unioning them with B′ ⊕D takes linear time.

Lemma 4. We can test if s and t lie in the same component C of P \ D, and
compute C if it exists, in O(n) time.

Proof. Using Lemma 3 we compute D in linear time. If s or t lies inside D, which
we can test in linear time, then C does not exist. Otherwise, by definition of XS

and XT , s and t must lie on the boundary of D. We then extract the curve σ
connecting s to t along the boundary of D, and test if σ intersects the top of
the polygon T . If (and only if) σ and T do not intersect, their concatenation
delineates a single component C ′ of P \ D. Since C ′ contains both s and t we
have C = C ′. So, all that is left is to test if σ and T intersect. This can be done
in linear time by explicitly constructing C ′ and testing if it is simple [5].
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Fig. 4. Our algorithm constructs the region D describing possible placements of a
barrier incident to B, and the shortest path H around D. An optimal barrier incident
to B has one endpoint on H.

Theorem 4. Given a simple polygon P with n vertices and two points s and
t on the boundary of P , we can test whether there exists a placement of a unit
length barrier that disconnects s from t in O(n) time.

3.3 Maximizing the length from s to t with a single barrier

In the remainder of the section we assume that we cannot place a barrier on (a
vertex of) B that completely separates s from t. Fix a distance d, and consider all
points p ∈ P such that SP(s, p) + SP(p, t) = d. Let Cd denote this set of points,
and define C≤d =

⋃
d′≤d Cd′ .

Observe that an optimal barrier will have one of its endpoints on the boundary
of D. Let H = SPD(s, t) be the shortest path from s to t avoiding D. We will
actually show that there is an optimal barrier V ∗ whose endpoint a lies on H,
and that H has low complexity. This then gives us an efficient algorithm to
compute an optimal barrier. To show that a lies on H we use that if V ∗ realizes
detour d∗ (i.e., SPV ∗(s, t) = d∗), the endpoint a also lies on Cd∗ . First, we prove
some properties of Cd∗ towards this end.

Observation 5. Let ∆s be a cell in SPM(s) with root as, and ∆t be a cell in
SPM(t) with root at. We have that Cd ∩∆s ∩∆t consists of a constant number
of intervals along the boundary of the ellipse with foci as and at.

Proof. A point p ∈ Cd satisfies SP(s, p) + SP(p, t) = d. For p ∈ ∆s ∩∆t we thus
have SP(s, as) + ‖asp‖+ ‖pat‖+ SP(at, t) = d. Since d, SP(s, as), and SP(at, t)
are constant, this equation describes an ellipse with foci as and at. Since ∆s and
∆t have constant complexity the lemma follows.

Lemma 5. C≤d is a geodesically convex set (it contains shortest paths between
its points).

Proof. Let p and q be two points on Cd, and assume, by contradiction, that there
is a point r on SP(p, q) outside of C≤d. By Lemma 1 the geodesic distance from s
to SP(p, q) is a convex function. Similarly, the distance from t to SP(p, q) is convex.
It then follows that the function f(x) = SP(s, x) + SP(x, t), for x on SP(p, q) is
also convex, and thus has its local maxima at p and/or q. Contradiction.
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C≤d

SP(s, t)

Rd

t
s

Fig. 5. A sketch of the regions C≤d (purple) and Rd. Observe that Rd cannot contain
any vertices of T , otherwise T would have to pierce SP(s, t) and thus C≤d.

Lemma 6. If there is an optimal barrier ua incident to a vertex u of B, then
the ray ρ from u through a intersects H.

Proof. The ray ρ splits P into two subpolygons P1 and P2. Since SPua(s, t) makes
a right bend at a (Observation 2 and our assumption that SP(s, t) makes a right
turn at u) it intersects both subpolygons P1 and P2. It is easy to show that
therefore s and t must be in different subpolygons (otherwise the geodesic crosses
ρ a second time, and we could shortcut the path along ρ). Since H connects s to
t it must thus also intersect ρ.

Next, we define the region Rd “below” C≤d. More formally, let R′ be the
region enclosed by B and SP(s, t), let d ≥ SP(s, t), and let Rd = R′ \ C≤d. See
Fig. 5. We then argue that it is separated from the top part of our polygon T ,
which allows us to prove that there is an optimal barrier with an endpoint on H.

Observation 6. Region Rd contains no vertices of T .

Proof. Assume, by contradiction that there is a vertex of T in Rd. Observe that
this disconnects C≤d. However, since C≤d is geodesically convex (Lemma 5) and
non-empty it is a connected set. Contradiction.

Lemma 7. If there is an optimal barrier ua where u is a vertex of B, then there
is an optimal barrier ur where r is a point on Du ∩H (recall that Du is the unit
disk centered at u).

Proof. Assume, by contradiction, that there is no optimal barrier incident to u
that has its other endpoint on H. Consider the ray from u in the direction of a. By
Lemma 6, the ray hits H in a point r′ (Fig. 6(a)). Because a lies on Cd∗ and C≤d∗

is geodesically convex (Lemma 5), r′ lies outside C≤d∗ . Let H[p, q] = SPD(p, q)
be the maximal (open ended) subpath of H that contains r′ and lies outside
of C≤d∗ . We then distinguish two cases, depending on whether or not H[p, q]
intersects (touches) D:
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Fig. 6. (a) Illustration of Lemma 7. (b) and (c) The two cases in the proof of Lemma 8.

H[p, q] does not intersect (touch) D. It follows that H[p, q] is a geodesic in
P as well, i.e. H[p, q] = SP(p, q). Since p, q ∈ C≤d∗ , and C≤d∗ is geodesically
convex (Lemma 5) we then have that H[p, q] ⊆ C≤d∗ . Contradiction.

H[p, q] intersects D in a point z. Let v ∈ B be a point such that z ∈ Dv. We
distinguish two subcases, depending on whether z lies in the region Rd∗ .
z ∈ Rd∗ . In this case z lies “below” C≤d∗ . From z ∈ H it follows that

H[p, q] ⊂ Rd∗ . However, as Cd∗ is geodesically convex, this must mean
that H[p, q] has a vertex w in Rd∗ at which it makes a left turn. This
implies that w is a vertex of T . By Observation 6 there are no vertices of
T in Rd∗ . Contradiction.

z 6∈ Rd∗ . Observe that vz is a valid candidate barrier. Since z 6∈ C≤d∗ ,
the point z actually lies above (i.e. to the left of) SP(s, t), and thus
SPvz(s, t) makes a right turn at z. Using that z 6∈ C≤d∗ it follows that
SPvz(s, t) > d∗. This contradicts that d∗ is the maximal detour we can
achieve.

Since all cases end in a contradiction this concludes the proof.

We now know there exists an optimal barrier with an endpoint on H. Next,
we focus on the complexity of H.

Observation 7. Let b and c be two points on H, such that H makes a left turn
in between b and c (i.e. the subcurve H[b, c] of H between b and c intersects the
half-plane right of the supporting line of bc). Then H[b, c] contains a vertex of T .

Lemma 8. The curve H intersects an edge e of SPM(z), with z ∈ {s, t}, at
most twice. Hence, H intersects SPM(z) at most O(n) times.

Proof. If e is a polygon edge, then H cannot intersect e at all, so consider the
case when e is interior to P . Assume, by contradiction, that H intersects e at
least three times, in points a, b, and c, in that order along H (Fig. 6(b) and (c)).

If the intersections a, b, and c, are also consecutive along e, then H makes
both a left and right turn in between a and c. It is easy to see that since H can
bend to the left only at vertices of T (Observation 7), the region (or one of the
two regions) enclosed by H and ac must contain a polygon vertex. Since both e
and H[a, c] lie inside P , this means that P has a hole. Contradiction.

If the intersections are not consecutive, (say a, c, b), then again there is a
region enclosed by H[a, c] and ab, containing a polygon vertex. Since both H[b, c]
and cb lie inside P , this vertex must lie on a hole. Contradiction.



Most vital segment barriers 11

Algorithm. We compute intersections of H with the shortest path maps SPM(s)
and SPM(t), and subdivide H at each intersection point. By Lemma 8, the
resulting curve H ′ still has only linear complexity. Consider the edges of H ′ in
which H ′ follows the boundary of Dv, for the vertices v of B. By Lemma 7 for some
v ∈ B there is an optimal barrier that has one endpoint on such an edge of H ′ and
the other at v. Since H ′ has only O(n) edges we simply try each edge e of H ′. For
all points r ∈ e, the geodesics SP(s, r) and SP(t, r) have the same combinatorial
structure, i.e., the roots as = rs(r), at = rt(r) stay the same. It follows that we
have a constant-size subproblem in which we can compute an optimal barrier in
constant time. Specifically, we compute the smallest ellipse E with foci as and
at that contains e and goes through the point r in which E and e = Dv have a
common tangent (if such a point exists). See Fig. 4. For that point r, we then also
know the length of the shortest path SPvr(s, t) = SP(s, r) + SP(r, t), assuming
that we place the barrier vr. We then report the point r that maximizes this
length over all edges of H ′.

Constructing the connected component P ′ of P \D that contains s and t takes
linear time (Lemma 4). This component P ′ is a simple splinegon, in which we
can compute the shortest path H connecting s to t in O(n) time [19]. Computing
SPM(s) and SPM(t) also requires linear time [12]. We can then walk along H,
keeping track of the cells of SPM(s) and SPM(t) containing the current point
on H. Computing the ellipse, the point p on the current edge e, and the length
of the geodesic takes constant time. It follows that we can compute an optimal
barrier incident to B in linear time. We use the same procedure to compute an
optimal barrier incident to T . We thus obtain the following result.

Theorem 8. Given a simple polygon P with n vertices and two points s and t
on ∂P , we can compute a unit length barrier that maximizes the length of the
shortest path between s and t in O(n) time.

3.4 Using multiple vital barriers

We prove a structural property that even when we are given many barriers, there
always exists an optimal solution in which they glued into a single super-barrier.
This implies that our linear-time algorithm from the previous section can still be
used to solve the problem.

Clearly, any solution distributes the barriers over some (unknown) number of
super-barriers. First observe that, similarly to Section 3.1, any super-barrier must
have a vertex at a vertex of P . We only need to argue that it is suboptimal to
have more than one such super-barrier. Let a1b1 and a2b2 be two segments inside
P , and let m1 ∈ a1b1,m2 ∈ a2b2 be two points that divide the segments in the
same proportion, that is m1 = γa1 + (1− γ)b1,m2 = γa2 + (1− γ)b2 for some
γ ∈ [0, 1]. Then we may argue, similar to Lemma 1, that f(γ) = SP(m1,m2) is
convex for γ ∈ [0, 1]. The result then follows from multiple application of the
triangle inequality, using that SP(m1,m2) ≤ γSP(a1, a2) + (1−γ)SP(b1, b2) . The
complete argument can be found in the full version of this paper [15].
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Theorem 9. Given a simple polygon P with n vertices, two points s and t
on ∂P , and k unit-length barriers, the optimal placement of the barriers which
maximizes the length of the shortest path between s and t consists of a single
super-barrier.

3.5 Most vital barriers for the flow

In simple polygons the critical graph has only two vertices – B and T (which,
for the flow blocking, are the T -S and S-T parts of ∂P ; refer to Fig. 2). Flow
blocking thus boils down to finding the shortest B-T connection (then all the
barriers will be placed along the connecting segment) – a problem that was solved
in linear time in [21].

4 Hardness results

In the remainder of the paper P is a polygonal domain with holes (as defined
in Section 2). We show that when there are many barriers, it is hard to decide
whether full blockage can be achieved, by reduction from Partition which reduces
to deciding whether equal-width channels between S and T can be blocked (the
reduction for path-HB1 is more involved, as it is not based on deciding full
blockage); the details are in full version [15]. We summarize our results in the
following two theorems.

Theorem 10. Flow-HBD and path-HBD are NP-hard.

Theorem 11. Path-HB1, Flow-HBD, and path-hBD are weakly NP-hard.

Membership in NP for our problems is open, since verifying solutions involve
summing square roots.

5 Polynomial-time algorithms

For path blocking, we show that O(1) barriers have only a polynomial number
of “combinatorially different” placements and for each placement the different-
homotopy path lengths are given by fixed functions of the barriers’ locations.
Flow blocking is reduced to shortening the B-T path in the critical graph. The
details are in the full version. We summarize our results in the following theorems.

Theorem 12. Path-HbD, and hence path-hbD, path-Hb1 and path-hb1, are poly-
nomial.

Theorem 13. Flow-HB1 can be solved in pseudopolynomial time.

Theorem 14. Flow-HbD, and hence flow-hbD, flow-Hb1 and flow-hb1, are poly-
nomial.

Theorem 15. Flow-hB1 is polynomial.
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6 Conclusion

We introduced geometric versions of the graph-theoretic most vital arcs problem.
We presented efficient solutions for simple polygons, and gave hardness results and
algorithms for various versions of the problem. The most intriguing open problem
is the hardness of path-hB1 (path blocking with few holes, our only unresolved
version); we conjecture that it is polynomial, as still only a constant-number of
super-barriers may be needed. Another interesting question is whether the flow
and the path blocking have fundamentally different complexities: we proved that
the complexities are the same for all versions except HB1 – for path-HB1 we
showed weak hardness but lack a pseudopolynomial-time algorithm, while for
flow-HB1 we have a a pseudopolynomial-time algorithm but no (weak) hardness
proof. More generally, various other setups may be considered. For instance, one
may be given a budget on the total length of the barriers– the problem then
is how to split the budget between the barriers and where to locate them. For
minimizing the maximum flow this version is easy: just place the barriers along
the shortest B-T path in the critical graph of the domain. For maximizing the
shortest path in a simple polygon the solution is trivial: make a single barrier
of the full length (and use our algorithm to find the optimal barrier location).
Blocking shortest paths in polygons with holes in this setting is an open problem.
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