# Most vital segment barriers



Irina Kostitsyna

Valentin Polishchuk

Maarten Löffler

Frank Staals



Given:

polygonal domain P



#### Given:

polygonal domain *P* source *S* 

target *T* 



#### Given:

polygonal domain P

source *S* 

target *T* 

set of barriers B



#### Given:

polygonal domain *P*source *S*target *T*set of **barriers** *B*Place the barriers s.t.

flow from *S* to *T* is minimized



#### Given:

polygonal domain *P*source *S*target *T*set of **barriers** *B*Place the barriers s.t.

flow from *S* to *T* is minimized



#### Given:

```
polygonal domain P
source S
target T
set of barriers B

Place the barriers s.t.
flow from S to T is minimized or,
```

length of the shortest path

from S to T is maximized.



#### Given:

```
polygonal domain P
source S
target T
set of barriers B

Place the barriers s.t.
flow from S to T is minimized or,
```

length of the shortest path from *S* to *T* is maximized.



#### Given:

```
polygonal domain P
source S
target T
set of barriers B

Place the barriers s.t.
flow from S to T is minimized or,
```

length of the shortest path from *S* to *T* is maximized.



Generalizes graph problems
Build dykes to delay floods etc.



Depends on type of domain type of barriers #barriers



Depends on type of domain type of barriers #barriers

Flow P Simple: O(n) time



Depends on

type of domain

type of barriers

#barriers

Flow

P Simple: O(n) time

P polygonal domain

many barriers NP-hard



Depends on type of domain type of barriers #barriers

#### Flow

P Simple: O(n) time

P polygonal domain

*O*(1) holes

many barriers weakly NP-hard



Depends on

type of domain

type of barriers

#barriers

Flow

P Simple: O(n) time

P polygonal domain

many barriers pseudo poly unit length



Depends on type of domain type of barriers #barriers

Path

P Simple: O(n) time



Depends on

type of domain

type of barriers

#barriers

Path

P Simple: O(n) time

P polygonal domain

many barriers NP-hard



Depends on type of domain type of barriers #barriers

#### Path

P Simple: O(n) time

P polygonal domain
O(1) holes
many barriers
diff. lenghts

weakly NP-hard



Depends on

type of domain

type of barriers

#barriers

Path

P Simple: O(n) time

P polygonal domain

many barriers weakly NP-hard wnit length



Depends on type of domain type of barriers #barriers

#### Path

P Simple: O(n) time

P polygonal domain
O(1) holes

many barriers
OPEN

unit length



Ingredients:

Test for complete blockage



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal T$  intersects  $\mathcal D$ 



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal T$  intersects  $\mathcal D$ 

 $\implies O(n)$  time



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D}$ 



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

**Lem.**  $C_{\leq d}$  is geodesically convex



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

**Lem.**  $C_{\leq d}$  is geodesically convex



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

H intersects SPM(s) and SPM(t) only O(n) times.



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal T$  intersects  $\mathcal D$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

H intersects SPM(s) and SPM(t) only O(n) times.



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal T$  intersects  $\mathcal D$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

H intersects SPM(s) and SPM(t) only O(n) times.

compute opt barrier for each piece in *O*(1) time



#### Ingredients:

Test for complete blockage

Compute  $\mathcal{D} = \mathcal{B} \oplus \mathcal{U}$ 

Test if  $\mathcal{T}$  intersects  $\mathcal{D}$ 

 $\implies O(n)$  time

Maximize detour

**Lem.**  $\exists$  opt barrier  $B = \overline{bv}$  with endpoint at a vertex v and b on  $\partial \mathcal{D} \cap H$ 

*H* shortest *s*, *t*-path in  $P \setminus \mathcal{D}$ 

H intersects SPM(s) and SPM(t) only O(n) times.

compute opt barrier for each piece in *O*(1) time

**Thm.** Compute opt B in O(n) time.



#### Ingredients:

Test for complete blockage



#### Ingredients:

Test for complete blockage



#### Ingredients:

Test for complete blockage

Maximize detour

No complete blockage ⇒

**Lem.** Opt placement glues all barriers into a super barrier **B**.



#### Ingredients:

Test for complete blockage

Maximize detour

No complete blockage ⇒

**Lem.** Opt placement glues all barriers into a super barrier **B**.

**Thm**. Compute opt B in O(n) time.

## Future Work



O(1) holes, many unit barriers

## Future Work



O(1) holes, many unit barriers

Variant with total budget

# Future Work O(1) holes, many unit barriers Variant with total budget Thank you!