
CG:YRF, Boston, MA, USA, June 14-18, 2016

Computing the Expected Area of an Induced Triangle

Vissarion Fisikopoulos∗ Frank Staals§ Constantinos Tsirogiannis§

1 Introduction

Consider the following problem: given a set P of n points in
the plane, compute the expected area of a triangle induced by
P , that is, a triangle whose vertices are selected uniformly at
random from the points in P . This problem is a special case
of computing the expected area of the convex hull of k points,
selected uniformly at random from P . These problems are
important in computing the functional diversity in Ecology [4].
In this setting, each point represents some characteristics of
a species, and the expected area of the convex hull provides
an estimate of the diversity of the species, given that only k
species exist in a geographic region.

We present a simple exact algorithm for the problem that
computes the expected triangle area in O(n2 log n) time, and
extends to the case of computing the area of the convex
hull of a size k subset. Additionally, we present a (1 ± ε)-
approximation algorithm for the case in which the ratio ρ
between the furthest pair distance and the closest pair dis-
tance of the points in P is bounded. With high probabil-
ity (whp.) our algorithm computes an answer in the range
[(1− ε)A∗, (1 + ε)A], where A is the true expected triangle
area, in O( 1

ε8/3
ρ4n5/3 log4/3 n) expected time.

Notation. Let ∆ denote the random variable corresponding
to a triangle induced by P , and let A(Q) denote the area
of a region Q ⊂ R2. We are thus interested in computing
E[A(∆)]. We denote the probability of an event X by P[X].
Assume w.l.o.g. that the origin o lies outside of the convex
hull CH(P ) of P , and assume that P ∪ {o} is in general
position, i.e. no three points lie on a line.

2 An Exact Algorithm

For a simple polygon Q = v0, .., vn whose vertices are given
in counterclockwise (ccw) order the well-known shoelace
formula gives us that A(Q) = 1

2

∑n
i=0A′(−−−−−−−−−→vivi+1 mod n),

where A′(−→pq) = det
( px qx
py qy

)
denotes the area of the triangle

defined by the origin and the directed line segment from p to
q. See Fig. 1 for an illustration.

Let E1, E2, and E3 be random indicator variables cor-
responding to the edges of ∆ in ccw order. We then have
E[A(∆)] =

E

[
3∑

i=1

A′(Ei)

]
=

3∑
i=1

E[A′(Ei)] =

3∑
i=1

∑
a

aP[A′(Ei) = a].

∗Département d’Informatique, Université Libre de Bruxelles,
fisikop@gmail.com
§MADALGO, Aarhus University, [f.staals|constant]@cs.au.dk

A′(−→pq)

o

∆

q

p

t

Figure 1: A(∆) is the sum of three “signed” areas, one of
which is shown in orange. The number of red points is npq .

We now observe that all areas a are realized by an ordered
pair of points (p, q), and thus

∑m
i=1

∑
a aP[A′(Ei) = a] =

3∑
i=1

∑
p,q∈P

A′(−→pq)P[Ei = −→pq] =
∑

p,q∈P
A′(−→pq)

3∑
i=1

P[Ei = −→pq].

An edge −→pq cannot be both the ith and the jth edge of
∆ (for i 6= j), and thus,

∑3
i=1 P[Ei = −→pq] equals the

probability that −→pq is a ccw edge in ∆. For −→pq to be a
ccw edge in ∆, the remaining vertex t of ∆ should lie
to the left of (the oriented line containing) −→pq, and thus
P[−→pq is a ccw edge in ∆] = npq/

(
n
3

)
, where npq is the num-

ber of points to (the oriented line containing) −→pq. This is
illustrated in Fig. 1. Thus, we have

E[A(∆)] =
∑

p,q∈P
A′(−→pq)P[−→pq is a ccw edge in ∆]

=
1(
n
3

) ∑
p,q∈P

A′(−→pq)npq. (1)

As A′(−→pq) can be computed in O(1) time for every pair
p, q, all we need to do is compute all values npq. We can
easily do this in O(n2 log n) time, by fixing each point p and
sorting the remaining points around p. We conclude:

Theorem 1 We can compute E[A(∆)] in O(n2 log n) time.

This approach directly extends to computing E[A(CH(S))]
of a randomly selected subset S ⊆ P of size k.

3 A (1± ε)-Approximation

We describe a (1±ε)-approximation algorithm for evaluating
Eq. 1, and thus for computing E[A(∆)]. The basic idea is
to decompose the

(
n
2

)
pairs of points into few pairs of sets

{a}, B, such that all points b ∈ B have roughly the same
triangle area A′(−→ab), and to approximate the sum of the nab
values for b ∈ B.

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather than a
formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



4th Computational Geometry Young Researchers Forum, 2016

3.1 Approximating the Areas

A well-separated pair decomposition (WSPD), with separa-
tion s = 4/δ, of P is a partition of the

(
n
2

)
pairs of points into

m = O(s2n log n) pairs of well-separated sets ({ai}, Bi),
i.e. if Bi fits into a disk D(Bi) of radius r, the distance be-
tween ai and any point b ∈ Bi is at least (s + 1)r [2]. It
follows that for any two points p, q ∈ D(Bi), the distance
‖aip‖ is a (1± δ)-approximation of the distance ‖aiq‖.

Assume w.l.o.g. that the distance from the origin o to any
point in P is at least the diameter d of P . It then follows that
for any set Bi, the pair ({o}, Bi) is well-separated.

Lemma 2 Let ({a}, B) be a well-separated pair with separa-
tion s = 4/δ, where δ = εc2

40d2 , c is the distance between the
closest pair of points in P , and d is the distance between the
furthest pair of points in P , and finally let AaB = A′(ap) for
the point p ∈ D(B) furthest from the line containing ao. For
every b ∈ B, AaB is a (1 + ε)-approximation of A′(−→ab).

Lemma 3 We can compute an oracle that gives an (1 + ε)-
approximation of A′(pq), for any p, q ∈ P , in O(1) time,
using O((ρ4/ε2)n log n) preprocessing time, where ρ is the
ratio between the furthest and the closest pair of points in P .

3.2 Approximating the Number of Points

Fix a point a ∈ P and a subset B ⊆ P of size z ≥ 2. We
present a (1 ± ε)-approximation for F ∗a (B) = F ∗(B) =∑

b∈B nb, where nb = nab. Our algorithm will compute
F (B) = (z/|B′|)∑b∈B′ n′b, where B′ ⊆ B is a sample of
the points in B, and n′b is a (1± δ)-approximation of nb. Let
E = |F ∗(B)− F (B)| denote the error in our approximation.

Given a line(segment) s, we denote the half planes bounded
by the line containing s by s− and s+. Let H = {ab+ |
b ∈ B} denote the set of half planes defined by a and B.
For a given point p ∈ P , let Rp = {h | h ∈ H ∧ h 3 p}
denote half planes containing p, and letmp denote the number
of such half planes. We are thus interested in computing
F ∗(H) =

∑
h∈H nh =

∑
p∈P mp = G∗H(P ). To this end,

our algorithm distinguishes two cases, depending on z.
Case H is small. When z ≤ t, for some, to be determined
t, we simply query each plane. Using a (1± ε)-approximate
half-plane counting algorithm [1] we immediately get E ≤∑

h∈H εnp = εF ∗(H).
Case H is large. When z > t we take a (uniformly drawn)
random sample H of the half-planes, and query only the
half-planes in H . More precisely, we compute F (H) =
F (H) = (z/|H|)∑h∈H n′h, where n′h denotes a (1 ± δ)-
approximation of the number of points from P on half-plane
h. If we take a sample of size O(r2 log r), then whp. H is
an (1/r)-approximation for the range space (H,R), where
R = {Rp | p ∈ P} [3]. That is, for all ranges R ∈ R we
have that ∣∣∣∣ |R||H| − |R ∩H||H|

∣∣∣∣ ≤ (1/r).

This allows us to show that the absolute error E is at most
nz/r + nzδ. We now choose (1/r) = δ = (zε)/8n, which
gives us E ≤ εz2/4. By ordering the points defining the
planes in H appropriately, we get F ∗(H) ≥ z(z − 1)/2 ≥
z2/4. Thus, F (H) is a (1± ε)-approximation for F ∗.
Running time. We choose the threshold t to minimize the
running time. If H is small the running time to handle the
pair ({a}, B) is O(z log n). If H is large the running time
is O(r2 log r log n) = O( n2

z2ε2 log2 n). These two quantities
balance out for t = z = (n/ε)2/3 log1/3 n. We conclude:

Lemma 4 AfterO(n log n) expected time preprocessing, we
can whp. compute a (1 ± ε) approximation of F ∗a (B), for
any {a} ∪B ⊆ P , in O((n/ε)2/3 log1/3 n) expected time.

3.3 Combining the Approximations

Straightforward calculations show that if we combine the
results from Lemmas 3 and 4, choosing both approximation
errors to be ε/3, we get a (1± ε)-approximation.

Theorem 5 Whp. we can compute a (1± ε)-approximation
of E[A(∆)] in O( 1

ε8/3
ρ4n5/3 log4/3 n) expected time.

4 Future Work

We would like to improve, or remove, the dependency on
ρ in our approximation algorithm. A possible approach to
do so would be to replace the WSPD by a different decom-
position of the pairs of points that allows a better approxi-
mation of the triangle areas. We conjecture that computing
E[A(∆)] exactly is 3SUM-hard. Proving this is another av-
enue for future work. Finally, we would like to investigate a
(1± ε)-approximation algorithm for the general problem of
computing E[A(CH(S))] for a fixed size sample S.

References

[1] P. Afshani and T. M. Chan. On Approximate Range
Counting and Depth. Discrete & Comp. Geom., 42(1):3–
21, 2009.

[2] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. J. ACM,
42(1):67–90, Jan. 1995.

[3] D. Haussler and E. Welzl. ε-nets and simplex range
queries. Discrete & Comp. Geom., 2(2):127–151, 1987.

[4] M. A. Mouchet, S. Villéger, N. W. Mason, and D. Mouil-
lot. Functional diversity measures: an overview of their
redundancy and their ability to discriminate community
assembly rules. Functional Ecology, 24(4):867–876,
2010.


	Introduction
	An Exact Algorithm
	A (1)-Approximation
	Approximating the Areas
	Approximating the Number of Points
	Combining the Approximations

	Future Work

