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Clear Unit-Distance Graphs∗
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Abstract

We introduce a variation of unit-distance graphs
which we call clear unit-distance graphs. They require
the pairwise distances of the representing points to be
either exactly 1 or not close to 1. We discuss proper-
ties and applications of clear unit-distance graphs.

1 Introduction

Unit-distance graphs are embedded graphs, usually in
R2, with the property that there is an edge between
two vertices if and only if their distance is exactly 1.
Unit-distance graphs can be traced back to Erdös [3],
who asked the now-famous open question of how many
edges a unit-distance graph with n vertices can have.
Since then, many deep observations about the class of
unit-distance graphs have been made [1, 2, 5].

Unit-distance graphs appear in many applications,
but we focus here on the role they play in certain
games and puzzles. Figure 1 shows a maze puzzle
realized by a set of a holes in a metal plate, and a
movable ring that has a small part of the perimeter
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Figure 1: A maze represented as the graph of a clear
unit distance point set. The goal is to get the ring
through the two holes connected by a line segment
(the text reads “GOAL”).
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Figure 2: (a) A set of points, forming a unite-the-dots
puzzle. (b) The drawing induced by the points as a clear
unit distance graph, with ε = 0.1.

missing. The missing part allows the ring to navi-
gate from hole to hole, but only between holes at unit
distance.

As another example, we propose a new type of
drawing puzzle. The puzzle connect-the-dots is a well-
known activity for young children, where the goal is to
create a drawing by connecting a series of numbered
dots in the given order. The resulting curve usually
completes a simple picture. However, connecting the
dots by means of numbered dots suffers from some
profound disadvantages. The puzzle only allows for a
single polyline, which decreases the possible complex-
ity of the drawing. Usually this is circumvented by
pre-drawing some parts of the drawing. In addition,
the printed numbers do not improve the visual ap-
pearance of the completed drawing. Finally, the use of
numbers is not particularly challenging. We there-
fore propose an adapted version of this puzzle which
is both more challenging and allows not just polyline
drawings, without the use of numbering. In this puz-
zle, which we call unite-the-dots, two dots should be
connected by a line segment if the distance between
these two points is equal to a pre-defined distance.
Without loss of generality we assume this distance to
be 1, hence the drawing resulting from a unite-the-
dots puzzle corresponds to a unit-distance graph. An
example is shown in Figure 2.

Clear unit-distance graphs. In practice, it is hard
to distinguish points at unit distance, and points
at almost unit distance. This motivates studying a
new class of graphs, the clear unit-distance graphs, in
which points are either at unit distance, or a distance
significantly different from 1. Clear unit-distance
graphs can be seen as a variation on the unit-distance
graph that is useful in practical situations like the ones
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just described. We will model the minimum required
deviation from the unit distance by an additive pa-
rameter ε. Moreover, in the applications mentioned
above, it is also undesirable if pairs of points are too
close. For unite-the-dots, the disk-shaped drawings of
points must be disjoint, and for the mechanical mazes
the holes should not merge into bigger holes. For sim-
plicity we use the same parameter ε to specify how far
two distinct points should be apart. Hence, for a given
value ε, the allowed distances between points lie in the
range [ε, 1− ε] ∪ [1] ∪ [1 + ε,∞).

Results and Organization. Section 2 formally in-
troduces clear unit-distance graphs and Section 3 in-
vestigates several properties of these graphs. Section 4
describes the unite-the-dots problem in more detail
and briefly discusses how these properties may be used
to obtain efficient algorithms for automatically gener-
ating unite-the-dots puzzles.

2 Definitions

An ε-distinguishable unit-distance point set is a set
of points in the plane with the property that every
pair (p, q) of points has a distance d(p, q) that is ei-
ther exactly 1, or at least ε and at most 1 − ε, or at
least 1 + ε.1 An ε-distinguishable unit-distance point
set induces an ε-distinguishable unit-distance draw-
ing, by connecting all points at unit distance with an
edge. A graph G is an ε-distinguishable unit-distance
graph if it has an ε-distinguishable unit-distance draw-
ing whose points correspond to the vertices of G. For
brevity we will write (1, ε)-point set, (1, ε)-graph, and
(1, ε)-drawing.

A clear unit-distance graph is an ε-distinguishable
unit-distance graph for some constant ε > 0.

3 Properties of clear unit-distance graphs

In this section, we investigate some properties of
(1, ε)-point sets and graphs. We assume 0 < ε < 1
is a given constant, and write γ = 1/ε.

3.1 Density bounds

Observation 1 Let G be an (1, ε)-graph, and R ⊂
R2 a region of constant diameter. There can be at
most O(γ2) vertices of any (1, ε)-drawing of G in R.

1 While the extra condition that inter-point distance must
be at least ε is natural from the point of view of the applica-
tions, the conceptually cleaner definition which only requires
distances to be either 1 or at least ε different from 1 may also
be of theoretical interest. We argue that the extra condition
does not influence the results too much, since any two points
at distance less than ε must have exactly the same neighbors in
the (relaxed) (1, ε)-graph. We defer a more thorough discussion
of this issue to the full paper.

2ε
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Figure 3: (a) A connected graph may have Ω(γ2) vertices
in a constant-diameter area. (Not all edges are shown
to avoid visual clutter.) (b) A zig-zag path must have
distance

√
ε between points to ensure a distance of at least

ε from a point to the unit circle centered at the points on
the other side.

This upper bound follows directly from the require-
ment that inter-point distances are at least ε. More
interestingly, the bound can actually be achieved,
even if the graph is required to be connected:

Lemma 2 There exist a connected (1, ε)-graph G, a
(1, ε)-drawing D of G and a region of constant diam-
eter R, such that there are Ω(γ2) vertices of D in R.

Proof. Note that placing points on the vertices of a
regular ε-spaced γ/4 by γ/4 grid results in a valid
(1, ε)-drawing, since all inter-point distances are at
least ε and clearly smaller than 1 − ε. To make
the graph connected, we slightly modify the grid and
place the points on the intersections of two sets of γ/4
circles, whose centers lie 2ε-spaced on a horizontal and
a vertical line, see Figure 3(a). �

The construction above relies on high-degree ver-
tices to work. More interesting is the question of how
dense a connected (1, ε)-graph with maximum vertex
degree d can be. Already for the case d = 2 (i.e., for
paths) this appears to be a challenging question. We
provide a lower bound of Ω(

√
γ):

Lemma 3 There exist a connected (1, ε)-graph G of
maximum degree 2, a (1, ε)-drawing D of G and a
region of constant diameter R, such that there are
Ω(
√
γ) vertices of D in R.

Proof. We take two sets of
√
γ/2 points, each ly-

ing
√
ε-spaced on a vertical line, such that the first

two points on the first line both lie at distance 1 to
the first point on the second line. Then the induced
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Figure 4: (a) A fixed triangle strip forces a large diameter.
(b) For ε =

√
3−1, a claw graph has a fixed drawing, which

can be replicated to get a linear diameter.

unit-distance graph is a path. Furthermore, the dis-
tance between any pair of points not at distance 1 is
at distance more than 1 + ε if they lie on different
lines or less than 1/2 if they lie on the same line, see
Figure 3(b). �

3.2 Crossing number bounds

The number of crossings in the example of Figure 3(a)
is Θ(γ4), showing that a constant-diameter region can
have as many crossings.

Lemma 4 Any (1, ε)-drawing has O(γ16/3) crossings
in a constant-diameter region.

Proof. Only O(γ2) points can be within unit dis-
tance of a constant-diameter region because these
points must lie in a (slightly larger) constant-diameter
region themselves. These points realize at most
O(γ8/3) unit distances which are the edges (using
the upper bound for the unit-distance problem by
Spencer, Szemerédi and Trotter [4]). �

3.3 Diameter bounds

We now proceed to bound the (geometric) diameter
of (1, ε)-drawings. Clearly, since all connected point
pairs are at unit distance, no drawing of a connected
(1, ε)-graph can have diameter larger than n. We
show that (1, ε)-graphs exist whose drawings neces-
sarily need this diameter:

Lemma 5 A connected (1, ε)-graph G of maximum
degree 4 exists such that any (1, ε)-drawing of G has
diameter Ω(n), for any 0 < ε ≤

√
3− 1.

Proof. A rigid strip of triangles is a clear unit dis-
tance graph. See Figure 4(a). �

For some specific values of ε, we can show that even
trees may require a linear diameter:

Lemma 6 A (1, ε)-tree G of maximum degree 3 ex-
ists such that any (1, ε)-drawing of G has diameter
Ω(n), for ε =

√
3− 1.

Proof. Let G be a caterpillar graph where all internal
nodes have degree 3 (i.e., a path turned into a tree by
adding a leaf to every internal path node). Now, the
three incident edges of any internal node must make
120◦ angles with each other; otherwise, two of them
would be at a distance less than

√
3 = 1 + ε to each

other (note that they are not connected in G so they
cannot be at distance 1, and they also cannot be at
a distance bigger than ε and smaller than 1− ε since
ε > 1/2). It remains to argue that the embedding has
a purely zigzagging backbone. But this is obvious,
since any deviation would place six points in regular
hexagonal position, creating a cycle. �

Clearly, as a direct consequence of Observation 1,
a (1, ε)-drawing must have diameter at least Ω(

√
nε).

Conversely, we show that there are graphs for which
every drawing has this diameter:

Lemma 7 A connected (1, ε)-graph G exists such
that any (1, ε)-drawing of G has diameter O(

√
nε).

Proof. We construct a graph G consisting of O(ε2n)
copies of the construction in Figure 3(a), linked to a
c
√
nε by c

√
nε grid. Clearly, the grid ensures that

any drawing has diameter O(
√
nε), and by choosing c

sufficiently large we make sure that if the grid is drawn
regularly, there is enough room in its faces for the
O(γ2) points without interfering with the grid points
themselves. �

4 Unite-the-dots

Unite-the-dots puzzles are a variation of connect-the-
dots (a.k.a. follow-the-dots), where a set of numbered
points is given, and a polyline must be drawn that
connects them in the right order. Unite-the-dots does
not use numbers to annotate points. Instead, two
points are connected if and only if they are at exactly
the right (unit) distance. Unit-distance drawings are
the output for a given set of points, and clear unit-
distance point sets are suitable as the input for unite-
the-dots puzzles. The puzzle can be solved with the
help of a small coin or short stick.

In this section we study the problem of converting a
line drawing into a clear unit-distance point set whose
clear unit-distance drawing resembles the line draw-
ing. Let C be a curve between two points p, q at unit
distance. We say that the line segment pq u-models C
with respect to a parameter δ ≥ 0 if the length of C is
at most 1 + δ, and C is fully inside the intersection of
the radius-1 disks centered at p and q. By extension,
we also say that the points p, q u-model C.

More generally, let C be any curve. Denote the
subcurve between any two points p, q ∈ C by C(p, q).
Let p1, . . . , pk be a set of k points on C and ordered
along it. Then we say that p1, . . . , pk u-model C if
(i) p1 and pk coincide with the two endpoints of C,
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(ii) points pi, pi+1 are at unit distance for all 1 ≤ i ≤
k − 1, (iii) points pi, pi+1 u-model C(pi, pi+1) for all
1 ≤ i ≤ k − 1, and (iv) no other pair of points is at
unit distance. To be suitable as a (1, ε)-point set, we
need to strengthen the last condition: (iv) every other
pair of points is at distance ≥ ε and ≤ 1−ε or ≥ 1+ε.

Even more generally, let C = {C1, . . . , Ch} be a col-
lection of curves. A (1, ε)-set of points P u-models C
if and only if P is a (1, ε)-point set, for every curve, a
subset of the points in P u-models it, and no pair of
points of P lies at distance 1 unless they u-model a
piece of some curve in C. Intuitively, this means that
the corresponding (1, ε)-drawing resembles C. Fur-
thermore, we require that P be minimal: no subset of
P should also u-model C. This condition ensures that
P has no isolated points in its (1, ε)-drawing.

Figure 5: A curve with points chosen from the one
end or the other end.

Most curves, even most line segments, are not u-
modeled by any point set. Since we must choose one
point of P at the endpoint of the curve, and the next
point must be at unit distance, it would be a coin-
cidence if a point (the last point) coincides with the
other endpoint. For example, only integer-length line
segments can be u-modeled. To overcome this caveat
we will allow one piece of each curve to be not u-
modeled. This may be an end piece or an interior
piece, but we would like it to be short. One could for
instance start at one end of C, choose a point in P ,
and then incrementally choose the next point where
the curve leaves the unit disk around the previously
chosen point, until the remaining part of C lies fully
inside the last disk, see Figure 5. We would then
have to check whether the chosen points p1, . . . , pk u-
model C(p1, pk) and form a (1, ε)-point set. Similarly,
we could start at the other end, or start at both ends
and leave a part in the middle.

Given a drawing, represented by a set of curves, we
wish to compute the dots that make a unite-the-dots
puzzle, along with any curve pieces that are not u-
modeled by the dots. We observe by the u-modeling
definition with parameter δ that the number of points
in P is always linear in the total length of the curves
in the input.

Suppose we are given a collection C of h curves and
parameters ε and δ, we can decide whether a (1, ε)-
point set exists whose (1, ε)-drawing resembles C with
the exception of at most one short ending piece per
curve (which would be pre-drawn). This is done as
follows. For each curve Ci, generate the two sets of

points Pi and Qi as in Figure 5. They are associated
with the True and False states of a variable xi. By
examining Pi and Qi separately we can decide if xi
can be True or False at all. By taking pairs of
points of different curves, say a point of Qi and a
point of Pj , we test their distance to decide if they
can be together in a (1, ε)-point set. If not, we make
a clause (xi ∨ xj). This approach allows us to solve
the problem using 2-SAT in O(n2) time, where n is
the total length of all curves (and also the number of
points in a unite-the-dots puzzle, if one exists).

Using packing and algorithmic ideas we can im-
prove the bound to O(n log n). The dependency on
ε is quartic, which can be derived from our results
in Section 3. We can use the same approach when
we allow to pre-draw at most one short interior curve
piece. Minimizing the total length of the pieces that
must be pre-drawn is NP-hard. We show these results
in the full paper.

5 Conclusions

We introduced clear unit-distance graphs and draw-
ings as a way to model situations where it is impor-
tant to clearly distinguish unit-distance point pairs
from other point pairs. We made several observations
about the properties of clear unit-distance graphs. We
expect that many of our bounds can be improved. It
would be of particular interest to improve the density
upper bound for paths: there is a substantial gap be-
tween the Ω(

√
γ) lower bound and the O(γ2) upper

bound, and an improved upper bound would immedi-
ately imply a better ε-dependency for our unite-the-
dots algorithm.
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