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Abstract

In this paper we introduce several innovative variants on the clas-
sic Connect-The-Dots puzzle. We study the underlying geometric
principles and investigate methods for the automatic generation of
high-quality puzzles from line drawings.

Specifically, we introduce three new variants of the classic Connect-
The-Dots puzzle. These new variants use different rules for draw-
ing connections, and have several advantages: no need for printed
numbers in the puzzle (which look ugly in the final drawing), and
perhaps more challenging “game play”, making the puzzles suit-
able for different age groups. We study the rules of all four variants
in the family, and design principles describing what makes a good
puzzle. We identify general principles that apply across the differ-
ent variants, as well as specific implementations of those principles
in the different variants. We make these mathematically precise in
the form of criteria a puzzle should satisfy.

Furthermore, we investigate methods for the automatic generation
of puzzles from a plane graph that describes the input drawing. We
show that the problem of generating a good puzzle –one satisfying
the mentioned criteria– is computationally hard, and present several
heuristic algorithms.

Using our implementation for generating puzzles, we evaluate the
quality of the resulting puzzles with respect to two parameters: one
for similarity to the original line drawing, and one for ambiguity;
i.e. what is the visual accuracy needed to solve the puzzle.
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1 Introduction

Point puzzles are puzzles where points are given and a drawing
should be made according to certain rules. The best known type
is called Connect-The-Dots or Follow-The-Dots, where points are
labeled with a number in a range 1, . . . , n, and the rule is to con-
nect points with consecutive numbers (see Figure 1). As a conse-
quence, the puzzle can be solved by drawing one polygonal line
with 1, 2, . . . , n as the vertices. Many drawings cannot be drawn
with a single polygonal line, so Connect-The-Dots puzzles often
have parts pre-drawn. Furthermore, the labels clutter the final draw-
ing. We present new point puzzle types and variations that do not
suffer from these drawbacks.

Instead of connecting points based on their labels, our new point
puzzles are purely based on a geometric rule. Examples of such a
rule are: connect a point to the closest other point, connect to the
point in the given direction, or connect any two points if they are
at distance 1. For all these puzzles, we would still like that a user
can find the solution without the use of a ruler or an other measure-
ment device. Hence, ambiguity becomes an important aspect when
designing such puzzles. Since this is difficult to deal with by hand,
we formalize ambiguity criteria for point puzzles, and provide al-
gorithms to generate a puzzle given the drawing that the solution
should resemble.

Connect-the-dots puzzles are not only fun to solve, they also help
develop cognitive skills in young children by exposing them to se-
quencial numbers. While this particular feature disappears when
we remove the labels, we expect that our new geometric variants
will have similar educational benefits. Solving the puzzles requires
estimation and comparison of distances, directions, and colors.
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Related Work. Our basic problem is converting a line drawing (a
planar straight-line graph) into a set of points so that the solution
is a drawing that looks like the original line drawing. This is sim-
ilar to the problem of line simplification. Typically, such problems
are solved by algorithms such as Douglas-Peucker [1973] or Imai-
Iri [1988]. Generally, a drawing consists of more than one curve.
Instead, it forms a planar subdivision. Subdivision simplification
is much harder; certain versions are even NP-hard [Estkowski and
Mitchell 2001; Guibas et al. 1993]. A practical solution to simplify
subdivisions is to consider maximal parts of a subdivision that are
polygonal lines, and apply line simplification to each separately.

The puzzler performs reconstruction of a shape based on a set of
points. This problem is well-known and has been studied as an al-
gorithmic problem for many years [Amenta et al. 1998; Dey et al.
2000; O’Rourke et al. 1987], including the 3D variants of surface
reconstruction from point clouds (e.g. [Hoppe et al. 1992]). The
generation of points from a line drawing to make a puzzle is a form
of sampling, and therefore the inverse of reconstruction from a sam-
ple. Our sampling version has different objectives than the more
common sampling applications in graphics, where it may be used
for anti-aliasing or converting a continuous signal into a discrete
one.

Our work has relations to certain research in graph theory and graph
drawing. One of the puzzle types is related to unit-distance graphs
and matchstick graphs [Harborth 1994], another puzzle type is re-
lated to nearest neighbor graphs [Paterson and Yao 1992], and a
third puzzle type is related to partially drawn links when displaying
graphs [Burch et al. 2011].

Since we introduce three new point puzzle types, no earlier research
exists on them, but there are several papers discussing the auto-
mated generation of mazes [Xu and Kaplan 2007] and other pen-
and-paper puzzles [Yoon et al. 2008; Jin et al. 2013; Ortı́z-Garcı́a
et al. 2007]. More generally, automated content generation for puz-
zle games and other games has received attention in digital games
research [Browne 2011; Colton 2002; Hendrikx et al. 2013].

2 The Connect-The-Dots Family

This section describes a number of point puzzles, beginning with
the well-known Connect-The-Dots puzzle and some variations. Af-
ter this we introduce three new point puzzle types that do not re-
quire numbers. Rules to draw an edge (line segment) may depend
on direction indicators, nearest neighbors, or unit distances.

2.1 Classic Connect-The-Dots

The standard Connect-The-Dots puzzle has already been described.
To alleviate the problem that only a single polygonal line can be
drawn to solve the puzzle, we allow interruptions by using two point
symbols instead of just one. If the label of a dot is a normal number,
then the edge to the next higher-numbered point should be drawn,
but if the label has a “+” appended to it, then the next edge should
not be drawn. In this way the puzzler draws several polygonal lines,
see Figure 1.

Other variations that allow multiple curves can give each polygonal
line in the drawing its own color or symbol, and use the sequence
of labels 1, 2, . . . for each color or symbol.

2.2 Connect-That-Dot

Instead of labeling each point, we can extend the point symbols
with a small link that shows the direction in which an edge should
be drawn. The puzzler extends this link until another point is
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Figure 1: A classical Connect-The-Dots puzzle and its solution.

reached, see Figure 2. Points can have more than one link attached,
and then we draw more edges from the point. The puzzle type can
be such that each edge to be drawn has links at both endpoints, or
there is a link at exactly one of the endpoints. We call these types
two-sided and one-sided.

Figure 2: A Connect-That-Dot puzzle with one-sided links and its
solution.

2.3 Connect-The-Closest-Dot

In Connect-The-Closest-Dot puzzles, every point must be con-
nected to its nearest neighbor. So, for any edge to be drawn by
a puzzler, at least one of its endpoints must have the other endpoint
as a closest point. We will require that each point has a unique
nearest neighbor.

Since the nearest-neighbor graph of n points has n − 1 or fewer
edges, only very simple drawings are possible. To allow for more
complex ones, we assign each point a color. The nearest-neighbor
rule is now applied only for points of the same color. See Figure 3.
When two or more differently colored points should be at the same
location, a pie-chart like point can be used. We connect such a point
to the nearest point of each color that it represents.

Figure 3: A Connect-The-Closest-Dot puzzle and its solution.

2.4 Connect-The-Unit-Dots

In Connect-The-Unit-Dots puzzles we connect two points if and
only if they lie at a unit distance. The exact value of the unit is
not important because a point set that is good as a puzzle for one
distance can be scaled to make it good for another distance. From
the puzzler’s perspective, it may make sense to choose the distance



equal to the diameter of a small coin, so that the coin can be slid
over the points to decide which ones should be connected.

Figure 4: A Connect-The-Unit-Dots puzzle and its solution.

A variation of the unit-distance rule is to use two or more distances,
that is, connect two points if their distance is either one centimeter,
or three centimeter. This can be done with points of one color,
or with different colors where each color is associated with one
distance.

When certain parts of a line drawing cannot be represented well by
points at unit distances, we pre-draw those parts. This possibility
exists for all other point puzzle types as well. Obviously, a good
puzzle should have only few pieces pre-drawn.

3 Mathematical Model

We would like to automate the process of generating a puzzle from
a line drawing, assumed to be given as an embedded planar straight-
line graph. Typically, such a graph has vertices of various degrees,
where vertices of degree 1 and 3 and higher are structural vertices
and vertices of degree 2 determine shape. The structural vertices
partition the edges of the graph into a number of edge sequences
that are polygonal lines containing the degree 2 vertices. In such
a partition, a vertex of degree d, with d ∈ {1, 3, 4, 5, . . .}, is the
endpoint of d polygonal lines. We call this partition the stroke de-
composition, and the resulting polygonal lines are called strokes.

In all puzzle types, the main task is to determine where to place
points so that the solution of the puzzle is similar to the original
drawing, but the original drawing is not immediately apparent in
the puzzle. Depending on the puzzle type we must also decide
what colors to use for which points, or on which side to place a
directional link.

3.1 General guidelines

We now discuss general guidelines for good point puzzles. Specific
point puzzle types have additional guidelines that we will discuss
later. For each puzzle, we require that:

• The solution to the point puzzle should be similar to the orig-
inal drawing.

• The puzzle should not have any two points too close together.
• The puzzle solution should not have intersections that the

original drawing did not have.
• The puzzle should not be ambiguous: visual inspection should

make clear what point pairs are to be connected.
• The puzzle should obscure the original drawing.

Next, we formalize the guidelines above. The general idea is to
specify the first four guidelines as constraints, defining whether or
not a puzzle is valid, and to express the last guideline as an opti-
mization function.

To make sure that the solved puzzle and the original drawing are
similar, we require that all structural vertices of the drawing are
structural vertices in the solution as well. This means that they
should either lie on a pre-drawn piece of the puzzle, or are repre-
sented by points. That is, they cannot be missing in the puzzle.

Furthermore, for every stroke in the drawing there must be a stroke
in the solution that is sufficiently close, using a small distance value
ε. In particular, for each point on a stroke in the drawing there must
be a point on the corresponding stroke in the solution that is within
distance ε.

To decide whether two points of a puzzle are too close together we
use a simple distance threshold value, denoted by δ.

We will assume that the original drawing does not have intersec-
tions; it is a planar drawing of a graph. Therefore, we do not allow
the puzzle solution to have any intersections either.

To decide whether the puzzle is ambiguous we must differentiate
on puzzle type; we cannot specify ambiguity in general. In the next
section, we define for each type what it means for a puzzle to be
ambiguous. In all cases, we express the maximum allowed ambi-
guity in terms of a parameter γ. We refer to this as the tolerance of
the puzzle.

Finally, we need to make sure that the original drawing is not di-
rectly visible in the puzzle. Small initial experiments indicated that
there are two main aspects to this: (i) the length and number of
pre-drawn pieces in the puzzle, and (ii) the number of points in the
puzzle. We express (i) as another criterion, so we can optimize
for the number of points in the puzzle. Hence, we require that the
length and/or the number of the pre-drawn pieces is at most λ.

3.2 Ambiguity

Connect-The-Dots. The classic Connect-The-Dots puzzle com-
pletely specifies which pairs of points are to be connected. The puz-
zler does not need to estimate distances or directions. We note that
ambiguity may arise if the labels of the points are not well placed;
this relates to the cartographic map labeling problem (e.g. [Chris-
tensen et al. 1995]). Map labeling has been well-studied for many
years and we will not discuss it further in this paper.

Connect-That-Dot. In a one-sided Connect-That-Dot puzzle two
points should be connected if one has a small link attached that is
directed to the other point. Every link is the beginning of an edge
to be drawn. Ambiguity may arise if there are several points in
roughly the same direction. It is natural to draw the edge to the
closest point that is in the right direction. Therefore, if two points
p, q should be connected using a link at p pointing towards q, then
there is no ambiguity if a certain region based on angular cones at
p and q is empty of other points, see Figure 5 (left and middle).
In the two-sided case it is natural to have a symmetric region, and
we require that any edge is non-ambiguous regardless of the point
and link we take as the start (Figure 5 (right)). The angles used to
construct the region for points p and q form the tolerance of this
puzzle.

p
q

p
q

p
q

Figure 5: (left) A valid one-sided puzzle in which we will connect
p to q using a link at p. The puzzle is invalid if q has a link pointing
to p (middle and right).

Connect-The-Closest-Dot. To avoid ambiguity in a Connect-
The-Closest-Dot puzzle we require that for every point p with color
c, the difference in distance between the nearest point to p with



color c, and the second-nearest point to p with color c is at least
γ, the tolerance. Hence, if we have to connect p to q, then p and q
have to be the only points with color c in the disk of radius ‖pq‖+γ
centered at p (see Figure 6).

γ
p

q

Figure 6: If there is an edge from p to q then p and q are the only
yellow points in the red disk of radius ‖pq‖+ γ.

Connect-The-Unit-Dots For Connect-The-Unit-Dots puzzles we
use a similar criterion as for the Connect-The-Closest-Dot puzzles.
Ambiguity may arise when two points lie at nearly unit distance,
so we require that no pair of points lie at a distance in the union of
open intervals (1 − γ, 1) ∪ (1, 1 + γ), for some 0 < γ < 1. See
Figure 7.

p
q

γ γ
γ γ

Figure 7: There may be no pairs of points with a distance in (1 −
γ, 1) ∪ (1, 1 + γ), hence the red region should be empty.

4 Automatic Generation

In this section we investigate how to automatically generate a point
puzzle, starting with a drawing that the solution should look like.
More formally, we are given a straight line plane graph D repre-
senting the drawing, and parameters ε, δ, γ, and λ. We now wish to
generate a puzzle resembling D that satisfies the criteria from the
previous section. However, unfortunately even testing if there ex-
ists a puzzle satisfying (just) requirements one and two is NP-hard:

Theorem 1. Given a plane graph D, it is NP-hard to determine if
there exists a plane straight-edge graph G such that the minimum
distance between any two vertices in G is at least δ, and the Haus-
dorff distance between (the embeddings of) D and G is at most ε.

It follows from Theorem 1 that there are no efficient algorithms to
generate Connect-The-Dots, Connect-That-Dot, or Connect-The-
Closest-Dot puzzles. Similarly, we can show that computing
Connect-The-Unit-Dots puzzles is NP-hard as well. Both proofs
can be found in the Technical Supplement.

We now present several heuristic algorithms to generate puzzles.
We focus on the case λ = 0, that is, we do not allow the algorithms

to pre-draw anything. For all but the Connect-The-Unit-Dots puz-
zles this means that we can compute puzzles by finding a minimum
size set of points that satisfies (most of) the criteria. To do this
we use variations of the line simplification algorithm by Imai and
Iri [1988]. For the Connect-The-Unit-Dots puzzles we cannot avoid
pre-drawing part of the input drawing, thus we use a different ap-
proach that we describe in more detail later. Before we continue,
we briefly review the line simplification algorithm by Imai and Iri.

The Imai-Iri algorithm simplifies a polygonal line L =
(v1, . . . , vn) by replacing parts of L by single line segments, called
shortcuts, between two vertices of L. A shortcut vivj is valid if
i < j and the part of L between vi and vj does not deviate more
than ε from the line segment between vi and vj . LetH be the graph
with v1, . . . , vn as the vertices and an edge (vi, vj) for every valid
shortcut vivj . A shortest path in H from v1 to vn gives a minimum
vertex simplification of H under the restriction that the deviation
is at most ε. The algorithm runs in O(n2) time, if implemented
well [Chan and Chin 1996].

To generate the points of the puzzle, we use an Imai-Iri style algo-
rithm on each stroke. Depending on the type of puzzle that we wish
to generate, we modify what it means for a shortcut to be valid. For
example, the basic algorithm does not guarantee that the simplifi-
cation of L does not have self-intersections. Once we have chosen
points for each stroke, we combine them and assign labels, colors,
or links to generate the puzzle.

4.1 Classic Connect-The-Dots

Recall that for the puzzle to be valid we need that (i) for each point
on a stroke S in the drawing, there must be a point on S in the
solution that is within distance ε, (ii) the solution does not have any
intersections, and (iii) the distances between all pairs of points are
at least δ. Thus, a shortcut vivj , with i < j, on stroke v1, .., vn is
valid if (and only if) it satisfies the following conditions.

For requirement (i) we use the standard requirement that all vertices
vi+1, . . . , vj−1 lie within distance ε from vivj .

For requirement (ii) we consider the bounded region(s) created by
vivj together with the part of the stroke vi, vi+1, . . . , vj . We reject
a shortcut if any bounded region contains any vertex from the input
(other than vi, vi+1, . . . , vj) inside it. This adaptation works well
in practice, but it may happen that we reject a shortcut that is needed
in a minimum vertex simplification. Hence, the shortest path in the
graph is not guaranteed to be optimal for the overall problem.

For requirement (iii) we could also reject every shortcut that is too
short. This is not sufficient, however, because it need not be con-
secutive points that are too close. Furthermore, enforcing this con-
dition could make the problem unsolvable. Therefore, we will not
explicitly enforce this requirement.

Often, there are several minimum-link simplifications that the
(adapted) Imai-Iri algorithm could return. We choose to return the
one that has largest Euclidean length, since this has a positive effect
on the shape fidelity. The adaptation to be made to the Imai-Iri algo-
rithm is simple: instead of assigning the weight 1 to every shortcut,
we assign the pair of weights (1, −[Euclidean length]), and com-
pute a lexicographically shortest path. The same idea can be used
to avoid shortcuts with a length below δ: we let their secondary
weight be large, causing the shortest path algorithm to avoid them.

Once we have computed all simplifications, we can create the puz-
zle. Vertices of degree 3 and higher need more than one label. To
minimize the number of times this happens, we can partition the
graph edges into a minimum number of paths. The standard algo-
rithm for finding an Eulerian path in a graph can easily be extended



to achieve this.

Testing requirement (ii) for all shortcuts efficiently can be done us-
ing basic computational geometry methods, leading to a worst-case
running time ofO(n2 logn) [de Berg et al. 1998]. While this seems
slow, the practical running time is much better. For example, if
shortcuts do not skip more than 100 vertices, the running time is
only O(n logn) in the worst case. Furthermore, we do not need
interactivity, we will not have very large values of n, and spatial
indexing structures will also improve the running time in practice.

4.2 Connect-That-Dot

For (one-sided) Connect-That-Dot puzzles we have the same gen-
eral requirements as for the classic Connect-The-Dots puzzles. Ad-
ditionally, we require that if we place a link at p pointing to q, the
cone-shaped region starting at p should be empty (Figure 5). So,
when deciding if the shortcut vivj is valid, we can test the two cone-
shaped regions for containment of any vertex of the input drawing,
which is a superset of the points to be selected for the puzzle. If we
find out that both regions are non-empty, then we may not be able
to assign a link to either endpoint. So we deem the shortcut invalid
and discard it.

This adaptation ensures that the Imai-Iri algorithm will always
return a set of points for a stroke for which links can be as-
signed. Algorithmically we can implement this adaptation to run
in O(n2 log2 n) time overall. We compute all shortcuts leaving a
particular vertex vi in O(n log2 n) time by using a dynamic data
structure that can check cone-region emptiness on the right subset
of the points in O(log2 n) time and with O(log2 n) update time, as
explained briefly next.

Let vi be fixed. We sort all vertices of the input except for vi by
angular order around vi. We use this angular order to store these
points in a balanced binary search tree. Each internal node repre-
sents an angular interval and a subset of the points. This subset is
stored in an associated structure that supports half-plane emptiness
queries, such as a dynamic convex hull [Brodal and Jacob 2002].
The tree with associated structures has size O(n logn) and allows
queries to decide if the cone region is empty of points in O(log2 n)
time.

When computing the valid shortcuts from vi, we process the points
vi+1, . . . incrementally. Suppose we are at vertex vj . We first test
the ε-condition for the shortcut vivj in the usual way and the cone-
emptiness condition by a query, and then we remove the point vj
from the data structure before proceeding to test vj+1.

4.3 Connect-The-Closest-Dot

Connect-The-Closest-Dot puzzles are more complex to compute,
although we can still use a variant on the Imai-Iri algorithm. Ob-
serve that within a single color, the drawing produced by the puzzler
is a nearest-neighbor graph, in which each connected component is
a tree that has one vertex such that distances increase along tree
edges away from this vertex.

To compute puzzles we take the following sequence of steps.
Firstly, we determine the stroke decomposition of the input draw-
ing. Then, for each stroke, we densify the edges so that there are
many vertices on the stroke. Thirdly, we compute the valid short-
cuts as in the Imai-Iri algorithm, yielding a graph G. Fourthly, we
turn G into a different graph H as follows. Every edge of G be-
comes a vertex in H . Two vertices ws and wt are connected by an
edge in H if and only if ws represents the directed edge (vi, vj) in
G and wt represents the directed edge (vj , vk) inG, and (vj , vk) is

longer than (vi, vj) by at least the tolerance γ. A path in H repre-
sents a distance-increasing set of points on the stroke; when we say
“distance-increasing” we implicitly assume that the increase uses at
least the tolerance in every step.

To ensure that simplifications of the stroke up to vk will be recon-
structed correctly and unambiguously, we will require that all ver-
tices of the stroke up to and including vi lie outside the circle cen-
tered at vk and with radius the distance to vj plus the tolerance γ.
If some point of v1, . . . , vi lies inside, then we discard the directed
edge (ws, wt) from H .

We try different ways to turn a stroke into a group of points for a
puzzle. Firstly, we can try to represent the stroke with a single color
if a path in H exists from the one end of the stroke to the other end,
or vice versa. We can also use just a single color if there is a point
in the middle from which we have distance-increasing paths to both
ends of the stroke. We also consider representing the stroke by two
colors. In this case we compute distance-increasing paths from both
ends of the stroke, and see if there is a vertex that we can reach from
both ends. If a stroke is long, we may start computing a distance-
increasing path until distances get too long or we can no longer
extend it. Then we treat the remaining part of the stroke recursively
with one or more colors. In all cases, a stroke yields one or more
groups of points so that within one group, one color suffices.

We now have multiple ways for each stroke to represent it. We try
all combinations brute-force. For each combination we need to find
out which groups can receive the same color, and which groups are
forced to use different colors. The fifth step of computing the puzzle
consists of assigning specific colors to the groups of points, when
we already know that within one group we can use a single color.
This step comes down to a graph coloring problem on a graph where
each group is a node, because conflicting groups—represented by
an edge between the nodes—cannot receive the same color.

Our solution to this graph coloring problem is a heuristic that also
attempts to use the same colors at vertices where several strokes
meet. This reduces the number of colors per point symbol, and the
number of points with multiple colors.

Eventually we choose the solution that uses fewest colors, and
among these, the one that has fewest points. Among these, we
choose the one with fewest colors per point symbol.

The worst-case running time of the heuristic is high, due to brute-
force testing of all combinations of ways to represent strokes. We
can afford this in practice because the number of strokes in a line
drawing is typically small, and the number of ways to represent a
single stroke is also not large.

4.4 Connect-The-Unit-Dots

When generating Connect-The-Unit-Dots puzzles we face prob-
lems of a different nature. For example, there may not be pairs
of input vertices at unit distance at all. Secondly, it is usually im-
possible to represent a single stroke using points only: consider a
stroke that is single line segment of non-integer length. Then we
will always have a short piece left that must be pre-drawn.

Because of these issues we use a different approach. On the theoret-
ical side, we present an algorithm that decides whether a Connect-
The-Unit-Dots puzzle exists for an input drawing if every stroke
can have at most one piece pre-drawn whose length must be less
than unit. This algorithm runs in O(n logn) time, where n is the
total length of the strokes in the input graph. Since the result of
the decision problem on a drawing is often negative, and we still
want to generate a puzzle, we develop a variant of the algorithm
that optimizes the requirements of this puzzle type.



We start by identifying some properties of the points that model a
single stroke S. Consider a point set p1, .., pn, all points on S and
ordered along S. This point set u-models the substroke S[p1, pn]
from p1 to pn if and only if (i) every consecutive pair has distance
exactly one, (ii) no other points are at distance one. It thus follows
that, for all i, the entire substroke S[pi−1, pi+1] is contained in the
disk of radius one centered at pi, and that the boundary of this disk
contains exactly two points: pi−1 and pi+1.

r1

r2
rmb1 b2

bm′

Figure 9: A stroke with points chosen from the start or the end of
the stroke.

The crucial observation is now that there is a unique maximal point
set that contains the start point p of S and u-models S[p, r]; the set
of red points p = r1, .., rm = r. Similarly, there is a unique maxi-
mal point set that contains the end point q and u-models S[b, q]; the
set of blue points q = b1, .., bm′ = b. See Figure 9.

Since we require that structural vertices are present if they are
not pre-drawn, and allow only one short pre-drawn segment per
stroke, it follows that the set of points on each stroke is of the
form r1, r2, .., rk, b`, b`−1.., b1, and that the pre-drawn segment
connects the last red point rk to the first blue point b`.

We can now decide whether there exists a point set P such that
the solution to the corresponding Connect-The-Unit-Dots puzzle re-
sembles a given input drawing and has at most one short pre-drawn
segment per curve. We do this by constructing a 2-SAT formula
that is satisfiable if and only if P exists. We generate the sets of
red and blue points for each stroke, and represent each point by a
boolean variable. The variable is set to TRUE if we include the point
in the puzzle and to FALSE otherwise. We add clauses that force
that all points on a stroke are of the form described above. Further-
more, for every pair of points we generate clauses expressing that
their distance should be in the range [δ, 1− γ] ∪ [1] ∪ [1 + γ,∞).

This guarantees that the selected points satisfy the ambiguity and
minimum-distance requirements from Section 3. The requirement
that the (solution of the) resulting puzzle should be similar to the
input drawing follows from the choice of unit-distance. We do not
explicitly model the requirement that the solution is intersection
free.

This approach allows us to solve the problem using 2-SAT in
O(n2) time [Aspvall et al. 1979], where n is the total length of
all curves (and also the number of points in a puzzle, if one exists).
Using packing and algorithmic ideas we can improve the bound to
O(n logn).

Our heuristic for the optimization variant solves a weighted MAX-
2-SAT version. We use constraints that we want to enforce with
weight ∞, and constraints that we prefer with a normal or low
weight. The heuristic will pre-draw more parts if this is needed to
satisfy the requirements, but maximization will lead to a small num-
ber of pieces that will be pre-drawn. Even though MAX-2-SAT is
NP-hard in general, this approach still works well in practice.

5 Implementations, Results

We implemented the algorithms described in the previous section.
In this section we show some generated puzzles, and present an
evaluation of how the quality of the puzzles depends on parameters
ε and γ.

Figures 8, 10, and 11 show generated puzzles for each of the four
puzzle types. For these drawings, our generated puzzles are of a
quality comparable to our own, manually designed ones.

Furthermore, we investigate the influence that the parameters ε and
γ have on the quality of the puzzle. The results can be seen in
Figures 19 and 20. In general, the results are as expected. When
we increase ε, we allow the puzzle to deviate more from the input
drawing. Thus, for all puzzles we see a decrease in the number of
points in the solution.

For Connect-That-Dot puzzles we analyze the number of points in
a puzzle and the percentage of pre-drawn length as functions of ε.
Figure 13 shows the number of points per length unit, or, the point
density. The black line shows the average of densities over 20 input

Figure 8: Examples of generated puzzles. A Connect-The-Closest-Dot puzzle (left) and a Connect-The-Unit-Dots puzzle (right).
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Figure 10: A generated Connect-The-Dots puzzle.

drawings. The thin lines in the graph show the 20 drawings sepa-
rately, and the green region indicates the standard deviation. The
point density is up to twice as large for some puzzles as for oth-
ers, for a value of ε. Within the shown range of ε that yields good
puzzles, the smallest ε has about 50% more points than the largest
ε. We also examined pre-drawn length as a function of ε, shown in
Figure 14. There is no clear relation to be observed. On the average,
less than 2% of the length of the input drawing is pre-drawn.

We produced similar graphs for a varying value of γ, the ambiguity
parameter, and a fixed value of ε = 15. These are shown in Fig-
ures 15 and 16. Starting at γ = 10◦ the puzzle becomes solvable
by hand without additional aids. We observe that the point den-
sity grows only slowly with γ, implying that we do not need many
extra points to make the puzzle easy. Similarly, for most puzzles,
less than 2% of the input drawing length need be pre-drawn for the
interesting range of γ between 10◦ and 20◦.

For Connect-The-Closest-Dot puzzles we are primarily interested
in the number of colors needed in the puzzles. We show this in
graphs with ε and γ on the horizontal axis in Figures 17 and 18.
We observe that the number of colors is usually between 6 and 8,
and depends at best mildly on ε. Only one puzzle required more
than 10 colors, which is too many to be useful. We also observe
that the number of colors needed grows slowly in γ; starting at γ =
20% the puzzles become solvable without aids. In other tests we
observed that the pre-drawn length is typically slightly higher than
for Connect-That-Dot puzzles, but still within acceptable limits for
a good puzzle.

For the Connect-The-Unit-Dots puzzles, the input drawing be-
comes quickly recognizable for a small unit, or, equivalently, a high
point density, while a large unit often results in many parts to be
pre-drawn. At the same time, a value of 10% for ε is too small
to solve the puzzle without mistakes, while a larger value quickly
yields many pre-drawn parts. It is therefore more difficult to find
parameter settings for good puzzles, and good puzzles may not ex-
ist for all input drawings. A more flexible approach may be needed
in an implementation that consistently produces good puzzles.

Figure 11: A generated Connect-That-Dot puzzle.

6 Conclusion

We introduced three new point puzzle types that are related to
Connect-The-Dots puzzles. A geometric rule determines which
pairs of points should be connected, rather than annotating points
with labels. This allows for more interesting puzzles, and results
in a cleaner final drawing. We identified several criteria for good
point puzzles, and captured these in a mathematical model. We
showed that for all our new puzzle types as well as the classical
Connect-The-Dots puzzles, generating a good puzzle from a given
input drawing is NP-hard. However, we presented heuristic algo-
rithms that appear to work well in practice.

Figure 12: A Connect-That-Dot puzzle with colored links forms a
coloring page.



An interesting remaining question is to determine how difficult a
puzzle is. There are several aspects to this, for example how appar-
ent the original drawing is, but also what ambiguity parameters still
allow solving the puzzle without measurement devices. To answer
these questions, we need user studies. Furthermore, an intriguing
open question is to find a suitable quantification for how apparent
the original drawing is in the puzzle. This may help in improving
the mathematical model, and allow for better algorithms or heuris-
tics to generate puzzles.

Other extensions to our work are other geometric rules describing
which points to connect, and annotating the point puzzles with col-
ors to produce coloring pages. See for example Figure 12. We pre-
sented our techniques to generate pencil-and-paper puzzles. How-
ever, our geometric rules also allow for digital variants. There are
many additional options for digital variants. For example, we can
use built-in measurement devices to allow for a smaller tolerance,
and thus better looking puzzles.
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Figure 13: Dependency of the point density in Connect-That-
Dot puzzles on ε.
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Figure 14: Percentage of the pre-drawn length in Connect-
That-Dot puzzles as a function of ε.
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Figure 15: Dependency of the point density in Connect-That-
Dot puzzles on γ.
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Figure 16: Percentage of the pre-drawn length in Connect-
That-Dot puzzles as a function of γ.
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Figure 17: Dependency of the number of colors in Connect-
The-Closest-Dot puzzles on ε.
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Figure 18: Dependency of the number of colors in Connect-
The-Closest-Dot puzzles on γ.



Figure 19: Point puzzles for increasing values of ε. The puzzle types from bottom to top: Connect-The-Dots, Connect-That-Dot, Connect-
The-Closest-Dot, and Connect-The-Unit-Dots. The pre drawn segments are shown in black and the solution to the puzzle is shown in blue.

Figure 20: Point puzzles for increasing values of γ. The puzzle types from bottom to top: Connect-That-Dot, Connect-The-Closest-Dot, and
Connect-The-Unit-Dots. The pre drawn segments are shown in black and the solution to the puzzle is shown in blue.


