Ferran Hurtado Vera Sacristán Maarten Löffler Maria Saumell Frank Staals

Inês Matos Rodrigo I. Silveira

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

 $egin{array}{ll} q & ext{visible from viewpoint } p \\ r & ext{not visible from viewpoint } p \end{array}$

2.5D Terrain \mathcal{T}

The viewshed $\mathcal{V}_{\mathcal{T}}(p)$ is the set of points visible from p.

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints ls a query point s visible?

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints ls a query point s visible? Which viewpoints see s?

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints

Is a query point s visible?

Which viewpoints see s?

What is the closest viewpoint to s?

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints

Is a query point s visible?

Which viewpoints see s?

What is the closest viewpoint to s?

 $\mathrm{Vis}(\mathcal{T},\mathcal{P})$

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints

Is a query point s visible?

Which viewpoints see s?

What is the closest viewpoint to s?

 $\mathrm{Vis}(\mathcal{T},\mathcal{P})$

 $ColVis(\mathcal{T}, \mathcal{P})$

2.5D Terrain \mathcal{T}

Given a set \mathcal{P} of viewpoints

Is a query point s visible?

Which viewpoints see s?

What is the closest viewpoint to s?

 $\mathrm{Vis}(\mathcal{T},\mathcal{P})$

 $ColVis(\mathcal{T}, \mathcal{P})$

 $VorVis(\mathcal{T}, \mathcal{P})$

2.5D Terrain \mathcal{T}

What is the complexity?

How to compute?

 $ext{Vis}(\mathcal{T}, \mathcal{P})$ $ext{ColVis}(\mathcal{T}, \mathcal{P})$ $ext{VorVis}(\mathcal{T}, \mathcal{P})$

2.5D Terrain \mathcal{T}

Vis, ColVis, and VorVis for one viewpoint?

Vis, ColVis, and VorVis for one viewpoint?

$$\operatorname{Vis}(\mathcal{T}, \{p\}) = \mathcal{V}_{\mathcal{T}}(p)$$

Complexity: $\Theta(n)$

Algorithm: O(n)

1.5D Terrain
$$\mathcal{T}$$

$$\Theta(n^2)$$
 $O((n\alpha(n)+k)\log n)$ [Katz *et al.*, Comp. Geom '92]

2.5D Terrain \mathcal{T}

Where to place viewpoints/guards/observers?

Where to place viewpoints/guards/observers?

NP-Hard
[King and Krohn, SODA'10]

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

Where to place viewpoints/guards/observers?

NP-Hard

[King and Krohn, SODA'10]

$$(1+\varepsilon)$$
-approx.

[Gibson et al., APPROX-RANDOM'09].

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

Where to place viewpoints/guards/observers?

NP-Hard

[King and Krohn, SODA'10]

 $(1+\varepsilon)$ -approx.

[Gibson et al., APPROX-RANDOM'09].

NP-Hard

[Cole & Sharir, J. Sym. Comp '89]

Hard to approximate [Eidenbenz et al., Algoritmica '00]

1.5D Terrain \mathcal{T}

2.5D Terrain \mathcal{T}

$$m = \text{size } \mathcal{T}$$

 $m = \text{size } \mathcal{P}$

Structure	Max. size	Computation time
Vis	$\Theta(n)$	
ColVis	$\Theta(mn)$	
VorVis	$\Theta(mn)$	
	•	

$$m = \text{size } \mathcal{T}$$

 $m = \text{size } \mathcal{P}$

 $n = \text{size } \mathcal{T}$ $k_c = \text{complex. ColVis}$ $k_v = \text{complex. VorVis}$

Structure	Max. size	Computation time
Vis	$\Theta(n)$	$O(n \log n)$
ColVis	$\Theta(mn)$	$O(n + (m^2 + k_c) \log n)$
VorVis	$\Theta(mn)$	$O(n + (m^2 + k_c)\log n + k_v(m + \log n\log m))$

$$m = \operatorname{size} \mathcal{T}$$

 $m = \operatorname{size} \mathcal{P}$

 $n = \text{size } \mathcal{T}$ $k_c = \text{complex. ColVis}$ $k_v = \text{complex. VorVis}$

Structure	Max. size	Computation time
Vis	$\Theta(n)$	$O(n \log n)$
ColVis	$\Theta(mn)$	$O(n + (m^2 + k_c) \log n)$
VorVis	$\Theta(mn)$	$O(n + (m^2 + k_c)\log n + k_v(m + \log n\log m))$
Structure	Max. size	Computation time
Structure Vis	$O(m^3n^2)$	Computation time
	$\frac{O(m^3n^2)}{O(m^3n^2)}$	· · · · · · · · · · · · · · · · · · ·
Vis	$O(m^3n^2)$	Computation time

$$m = \text{size } \mathcal{T}$$

 $m = \text{size } \mathcal{P}$

 $n = \text{size } \mathcal{T}$ $k_c = \text{complex. ColVis}$ $k_v = \text{complex. VorVis}$

Structure	Max. size	Computation time
Vis	$\Theta(n)$	$O(n \log n)$
ColVis	$\Theta(mn)$	$O(n + (m^2 + k_c) \log n)$
VorVis	$\Theta(mn)$	$O(n + (m^2 + k_c)\log n + k_v(m + \log n\log m))$

Structure	Max. size	Computation time
Vis	$\overline{O(m^3n^2)}$	$O(m(n\alpha(n) + k_c)\log n)$
ColVis	$O(m^3n^2)$	$O(m(n\alpha(n) + k_c)\log n)$
VorVis	$O(m^4n^2)$	$O(m(n\alpha(n) + k_c) \log n)$

$$m = \operatorname{size} \mathcal{T}$$

 $m = \operatorname{size} \mathcal{P}$

$$m = \text{size } \mathcal{T}$$
 $k_c = \text{complex. ColVis}$ $m = \text{size } \mathcal{P}$ $k_v = \text{complex. VorVis}$

Structure	Max. size	Computation time
Vis	$\Theta(n)$	$O(n \log n)$
ColVis	$\Theta(mn)$	$O(n + (m^2 + k_c) \log n)$
VorVis	$\Theta(mn)$	$O(n + (m^2 + k_c)\log n + k_v(m + \log n \log m))$
Structure	Max. size	Computation time
		Computation time $O(m(n\alpha(n) + k_*) \log n)$
Vis	$O(m^3n^2)$	$O(m(n\alpha(n) + k_c) \log n)$
	$\frac{O(m^3n^2)}{O(m^3n^2)}$	$O(m(n\alpha(n) + k_c) \log n)$ $O(m(n\alpha(n) + k_c) \log n)$
Vis ColVis	$O(m^3n^2)$	$O(m(n\alpha(n) + k_c) \log n)$

We compute left Vis: $q \in left$ Vis $\iff q$ visible by a viewpoint to the left of q.

We compute left Vis: $q \in left$ Vis $\iff q$ visible by a viewpoint to the left of q.

Observation 1. Let q be left-visible from p_1 and p_2 . For any r to the right of q:

We compute left Vis: $q \in left$ Vis $\iff q$ visible by a viewpoint to the left of q.

Observation 1. Let q be left-visible from p_1 and p_2 . For any r to the right of q: p_1 does not see $r \Longrightarrow p_2$ does not see r.

We compute left Vis: $q \in left$ Vis $\iff q$ visible by a viewpoint to the left of q.

Observation 1. Let q be left-visible from p_1 and p_2 . For any r to the right of q: p_1 does not see $r \Longrightarrow p_2$ does not see r.

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

Algorithm: Sweep the terrain, maintain leftmost visible viewpoint p_a .

- Viewpoint events
- Vertex events

 p_a : \perp

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \Longleftrightarrow q$ visible by a viewpoint to the left of q.

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

- Viewpoint events
- Vertex events

We compute *left* Vis:

 $q \in left \, \mathrm{Vis} \iff q \, \text{ visible by a viewpoint to the left of } q.$

Algorithm: Sweep the terrain, maintain leftmost visible viewpoint p_a .

- Viewpoint events
- Vertex events

Running time: $O(\log n)$ time per event \Longrightarrow $O((k+n)\log n) = O(n\log n)$ time in total.

The ray of p and vertex v

Classify the vertices of $Vis(\mathcal{T}, \mathcal{P})$:

ullet vertices of ${\mathcal T}$

Classify the vertices of $Vis(\mathcal{T}, \mathcal{P})$:

- ullet vertices of ${\mathcal T}$
- ullet Intersections between an edge e and a vase

Classify the vertices of $Vis(\mathcal{T}, \mathcal{P})$:

- ullet vertices of ${\mathcal T}$
- ullet Intersections between an edge e and a vase
- Intersections between a triangle t and 2 vases

Classify the vertices of $Vis(\mathcal{T}, \mathcal{P})$:

 $O(n^3m^2)$

- $O(n) \qquad \text{o vertices of } \mathcal{T} \\ O(n^2m) \qquad \text{o Intersections between an edge } e \text{ and a vase} \\ O(n^3m^2) \qquad \text{o Intersections between a triangle } t \text{ and 2 vases}$

Classify the vertices of $Vis(\mathcal{T}, \mathcal{P})$:

- $O(n) \qquad \bullet \text{ vertices of } \mathcal{T} \\ O(n^2m) \qquad \bullet \text{ Intersections between an edge } e \text{ and a vase} \\ O(n^2m^3) \qquad \bullet \text{ Intersections between a triangle } t \text{ and 2 vases}$

Bound #intersections between a triangle and 2 vases Fix two vases, and let $\sigma = \mathbb{V}(p,e_p) \cap \mathbb{V}(q,e_q)$

Bound #intersections between a triangle and 2 vases

Fix two vases, and let $\sigma = \mathbb{V}(p, e_p) \cap \mathbb{V}(q, e_q)$

ullet highest vertex on σ

Bound #intersections between a triangle and 2 vases

Fix two vases, and let $\sigma = \mathbb{V}(p, e_p) \cap \mathbb{V}(q, e_q)$

- ullet highest vertex on σ
- otherwise

Bound #intersections between a triangle and 2 vases

Fix two vases, and let $\sigma = \mathbb{V}(p,e_p) \cap \mathbb{V}(q,e_q)$

- highest vertex on σ
- otherwise charge intersection points

Bound #intersections between a triangle and 2 vases

Fix two vases, and let $\sigma = \mathbb{V}(p, e_p) \cap \mathbb{V}(q, e_q)$

- highest vertex on σ
- otherwise charge intersection points

#intersection points?

Lemma 2. Every edge intersects at most $O(nm^3)$ segments \overline{vw} .

Bound #intersections between a triangle and 2 vases

Fix two vases, and let $\sigma = \mathbb{V}(p, e_p) \cap \mathbb{V}(q, e_q)$

- ullet highest vertex on σ
- otherwise charge intersection points

#intersection points?

Lemma 2. Every edge intersects at most $O(nm^3)$ segments \overline{vw} .

Total: $O(n^2m^3)$

Theorem 3. Complexity Vis is $O(n^2m^3)$.

Future Work

VorVis algorithm depends on k_c .

Improve complexity bounds.

Improve algorithms!

Future Work

VorVis algorithm depends on k_c .

Improve complexity bounds.

Improve algorithms!

