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Abstract
We present algorithms and data structures that support the interactive analysis of the group-
ing structure of one-, two-, or higher-dimensional time-varying data while varying all defining
parameters. Grouping structures characterise important patterns in the temporal evaluation of
sets of time-varying data. We follow Buchin et al. [9] who define groups using three parameters:
group-size, group-duration, and inter-entity distance. We give upper and lower bounds on the
number of maximal groups over all parameter values, and show how to compute them efficiently.
Furthermore, we describe data structures that can report changes in the set of maximal groups
in an output-sensitive manner. Our results hold in Rd for fixed d.
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1 Introduction

Time-varying phenomena are ubiquitous and hence the rapid increase in available tracking,
recording, and storing technologies has led to an explosive growth in time-varying data. Such
data comes in various forms: time-series (tracking a one-dimensional variable such as stock
prices), two- or higher-dimensional trajectories (tracking moving objects such as animals,
cars, or sport players), or ensembles (sets of model runs under varying initial conditions for
one-dimensional variables such as temperature or rain fall), to name a few. Efficient tools to
extract information from time-varying data are needed in a variety of applications, such as
predicting traffic flow [18], understanding animal movement [7], coaching sports teams [13],
or forecasting the weather [21]. Consequently, recent years have seen a flurry of algorithmic
methods to analyse time-varying data which can, for example, identify important geographical
locations from a set of trajectories [6, 15], determine good average representations [8], or find
patterns, such as groups traveling together [9, 14, 17].

Most, if not all, of these algorithms use several parameters to model the applied problem
at hand. The assumption is that the domain scientists, who are the users of the algorithm,
know from years of experience which parameter values to use in their analysis. However, in
many cases this assumption is not valid. Domain scientists do not always know the correct
parameter settings and in fact need algorithmic support to interactively explore their data
in, for example, a visual analytics system [3, 16].
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We present algorithms and data structures that support the interactive analysis of the
grouping structure of one-, two-, or higher-dimensional time-varying data while varying all
defining parameters. Grouping structures (which track the formation and dissolution of
groups) characterise important patterns in the temporal evaluation of sets of time-varying
data. Classic examples are herds of animals or groups of people. But also for one-dimensional
ensembles grouping is meaningful, for example, when detecting trends in weather models [20].

Buchin et al. [9] proposed a grouping structure for sets of moving entities. Their definition
was later extended by Kostitsyna et al. [17] to geodesic distances. In this paper we use
the same trajectory grouping structure. Our contributions are data structures and query
algorithms that allow the parameters of the grouping structure to vary interactively and
hence make it suitable for explorative analysis of sets of time-varying data. Below we first
briefly review the definitions of Buchin et al. [9] and then state our contributions in detail.

Trajectory grouping structure [9]. Let X be a set of n entities moving in Rd and let T denote
time. The entities trace trajectories in T× Rd. We assume that each individual trajectory is
piecewise linear and consists of at most τ vertices. Two entities a and b are ε-connected if
there is a chain of entities a = c1,.., ck = b such that for any pair of consecutive entities ci
and ci+1 the distance is at most ε. A set G is ε-connected, if for any pair a, b ∈ G, the entities
are ε-connected. Given parameters m, ε, and δ, a set of entities G is an (m, ε, δ)-group
during time interval I if (and only if) (i) G has size at least m, (ii) duration(I) ≥ δ, and (iii)
G is ε-connected at any time t ∈ I. An (m, ε, δ)-group (G, I) is maximal if G is maximal in
size or I is maximal in duration, that is, if there is no group H ⊃ G that is also ε-connected
during I, and no interval J ⊃ I such that G is ε-connected during J .

Results and Organization. We want to create a data structure D that represents the
grouping structure, that is, its maximal groups, while allowing us to efficiently change the
parameters. As we show below, the complexity of the problem is already fully apparent for
one-dimensional time-varying data. Hence we restrict our description to R1 in Sections 2–4
and then explain in Section 5 how to extend our results to higher dimensions.

If all three parameters m, ε, and δ can vary independently the question arises what
constitutes a meaningful maximal group. Consider a maximal (m, ε, δ)-group (G, I). If
we slightly increase ε to ε′, and consider a slightly longer time interval I ′ ⊇ I then (G, I ′)
is a maximal (m, ε′, δ)-group. Intuitively, these groups (G, I) and (G, I ′) are the same.
Thus, we are interested only in (maximal) groups that are “combinatorially different”. Note
that the set of entities G may also be a maximal (m, ε, δ)-group during a time interval J
completely different from I, we also wish to consider (G, I) and (G, J) to be combinatorially
different groups. In Section 2 we formally define when two (maximal) (m, ε, δ)-groups are
(combinatorially) different. We prove that there are at most O(|A|n2) such groups, where A
is the arrangement of the trajectories in T× R1, and |A| is its complexity. We also argue
that the number of maximal groups may be as large as Ω(τn3), even for fixed parameters m,
ε, and δ and in R1. This significantly strengthens the lower bound of Buchin et al. [9].

In Section 3 we present an O(|A|n2 log2 n) time algorithm to compute all combinatorially
different maximal groups. In Section 4 we describe a data structure that allows us to efficiently
obtain all groups for a given set of parameter values. Furthermore we also describe data
structures for the interactive exploration of the data. Specifically, given the set of maximal
(m, ε, δ)-groups we want to change one or more of the parameters and efficiently report only
those maximal groups which either ceased to be a maximal group or became a maximal
group. That is, our data structures can answer so-called symmetric-difference queries which
are gaining in importance as part of interactive analysis systems [12]. As mentioned above,
in Section 5 we extend our data structures and algorithms to Rd, for fixed d.
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2 Combinatorially Different Maximal Groups

We consider entities moving in R1, hence the trajectories form an arrangementA in T×R1. We
assume that no three pairs of entities have equal distance at the same time. Consider the four-
dimensional parameter space P with axes time, size, distance, and duration. A set of entities G
defines a region AG in this space in which it is alive: a point p = (pt, pm, pε, pδ) = (t,m, ε, δ)
lies in AG if and only if G is a (m, ε, δ)-group at time t. We use these regions to define when
groups are combinatorially different. First (Section 2.1) we fix m = 1 and δ = 0 and define
and count the number of combinatorially different maximal (1, ε, 0)-groups, over all choices
of parameter ε. We then extend our results to include other values of δ and m in Section 2.2.

2.1 The Number of Distinct Maximal (1, ε, 0)-Groups, over all ε

Consider the (t, ε)-plane in P through δ = 0 and m = 1. The intersection of all regions AG
with this plane give us the points (t, ε) for which G is a (1, ε, 0)-group. Note that G is a
(1, ε, 0)-group at time t if and only if the set G is ε-connected at time t. Hence the region AG,
restricted to this plane, corresponds to the set of points (t, ε) for which G is ε-connected. AG,
restricted to this plane, is simply connected. Furthermore, as the distance between any pair
of entities moving in R1 varies linearly, AG is bounded from below by a t-monotone polyline
fG. The region is unbounded from above: if G is ε-connected (at time t) for some value ε,
then it is also ε′-connected for any ε′ ≥ ε (see Fig. 1). Every maximal length segment in the
intersection between (the restricted) AG and the horizontal line `ε at height ε corresponds to
a (maximal) time interval I during which (G, I) is a (1, ε, 0)-group, or an ε-group for short.
Every such a segment corresponds to an instance of ε-group G.

I Observation 1. Set G is a maximal ε-group on I, iff the line segment sε,I = {(t, ε) | t ∈ I}
is a maximal length segment in AG, and is not contained in AH , for a supergroup H ⊃ G.

Two instances of ε-group G may merge. Let v be a local maximum of fG and I1 = [t1, vt]
and I2 = [vt, t2] be two instances of group G meeting at v. At vε, the two instances G that
are alive during [t1, vt] and [vt, t2] merge and we now have a single time interval I = [t1, t2]
on which G is a group. We say that I is a new instance of G, different from I1 and I2.
We can thus decompose AG into maximally-connected regions, each corresponding to a
distinct instance of group G, using horizontal segments through the local maxima of fG. We
further split each region at the values ε where G changes between being maximal and being
dominated. Let PG denote the obtained set of regions in which G is maximal. Each such a
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Figure 1 (a) A set of trajectories for a set of entities moving in R1 (b) The region A{r,v} during
which {r, v} is alive, and its decomposition into polygons, each corresponding to a distinct instance.
In all such regions, except the top one {r, v} is a maximal group: in the top region {r, v} is dominated
by {r, v, o} (darker region).
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Figure 2 The arrangement H and the regions A{r,v} (purple) and A{p,o} (orange) for the
trajectories shown in Fig. 1(a). The arrangement H corresponds to the arrangement of functions
ha(t) that represent the distance from a to the entity directly above a at time t.

region P corresponds to a combinatorially distinct instance on which G is a maximal group
(with at least one member and duration at least zero). The region P is bounded by at most
two horizontal line segments and two ε-monotone chains (see Fig. 1(b)).

Counting maximal ε-groups. To bound the number of distinct maximal ε-groups, over all
values of ε, we have to count the number of polygons in PG over all sets G. While there are
possibly exponentially many sets, there is structure in the regions AG which we can exploit.

Consider a set of entities G and a region P ∈ PG corresponding to a distinct instance of
the maximal ε-group G. We observe that all vertices of P lie on the polyline fG: they are
either directly vertices of fG, or they are points (t, ε) on the edges of fG where G starts or
stops being maximal. For the latter case there must be a polyline fH , for some subgroup or
supergroup of G, that intersects fG at such a point. Furthermore, observe that any vertex
(of either type) is used by at most a constant number of regions from PG.

Below we show that the complexity of the arrangement H, of all polylines fG over all G,
is bounded by O(|A|n). Furthermore, we show that each vertex of H can be incident to at
most O(n) regions. It follows that the complexity of all polygons P ∈ PG, over all groups
(sets) G, and thus also the number of such sets, is at most O(|A|n2).

The complexity of H. The span SG(t) = {a | a ∈ X ∧ a(t) ∈ [minb∈G b(t),maxb∈G b(t))}
of a set of entities G at time t is the set of entities between the lowest and highest entity of
G at time t (for technical reasons, we include the lowest entity of G in the span, but not the
highest). Let ha(t) denote the distance from entity a to the entity directly above a at time t,
that is, ha(t) is the height of the face in A that has a on its lower boundary at time t.

I Observation 2. A set G is ε-connected at time t, if and only if the largest distance among
consecutive entities in SG(t) is at most ε. That is,

fG(t) = max
a∈SG(t)

ha(t)

It follows that H is a subset of the arrangement of the n functions ha, for a ∈ X (see Fig. 2).
We use this fact to show that H has complexity at most O(|A|n):

I Lemma 3. Let A be an arrangement of n line segments, and let k be the maximum
number of line segments intersected by a vertical line. The number of triplets (F, F ′, x)
such that the faces F ∈ A and F ′ ∈ A have equal height h at x-coordinate x is at most
O(|A|k) ⊆ O(|A|n) ⊆ O(n3).

I Remark. Interestingly, this bound is tight in the worst case. In the full version of this
paper we give a construction where there are Ω(n3) triplets (F, F ′, x) such that F and F ′
have equal height at x, even if we use lines instead of line segments [22].

I Lemma 4. The arrangement H has complexity O(|A|n).
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What remains to show is that each vertex v of H can be incident to at most O(n) polygons
from different sets. We use Lemma 5, which follows from Buchin et al. [9]:

I Lemma 5. Let R be the Reeb graph for a fixed value ε capturing the movement of a set of
n entities moving along piecewise-linear trajectories in Rd (for some constant d), and let v
be a vertex of R. There are at most O(n) maximal groups that start or end at v.

I Lemma 6. Let v be a vertex of H. Vertex v is incident to at most O(n) polygons from
P =

⋃
G⊆X PG.

Proof. Let P ∈ PG be a region that uses v. Thus, G either starts or ends as a maximal
vε-group at time vt. This means, v correspond to a single vertex u in the Reeb graph, built
with parameter vε. By Lemma 5, there are at most O(n) maximal vε-groups that start or
end at u. Hence, v can occur in regions of at most O(n) different sets G. For a fixed set G,
the regions in PG are disjoint, so there are only O(1) regions from PG, that contain v. J

I Lemma 7. The number of distinct ε-groups, over all values ε, and the total complexity of
all regions P =

⋃
G⊆X PG, are both at most O(|H|n) = O(|A|n2).

2.2 The Number of Distinct Maximal Groups, over all Parameters
Maximal groups are monotonic in m and δ (see Buchin et al. [9]); hence a maximal (m, ε, δ)-
group is also a maximal (m′, ε, δ′)-group for any parameters m′ ≤ m and δ′ ≤ δ. It follows
that the number of combinatorially different maximal groups is still at most O(|A|n2).

δ′
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Figure 3 A cross section of the region A{r,v}
with the plane through δ = δ′. The boundary of
the original region (i.e. the cross section with the
plane through δ = 0) is dashed.

For the complexity of the regions in⋃
PG: fix m = 0, and consider the remain-

ing subspace of P with axes time, distance,
and duration, and the restriction of AG, for
any set G, into this space. In the δ = 0
plane we simply have the regions AG, that
are bounded from below by a t-monotone
polyline fG, as described in Section 2.1. As
we increase δ we observe that the local min-
ima in the boundary fG get replaced by
a horizontal line segment of width δ (see
Fig. 3). For arbitrarily small values of δ > 0,
the total complexity of this boundary is still O(|A|n2). Further increasing δ, monotonically
decreases the number of vertices on the functions fG. It follows that the regions AG, restricted
to the time, distance, duration space also have total complexity O(|A|n2). Finally, consider
the regions AG in the full four dimensional space. Clearly, AG ∩ {p | p ∈ P ∧ pm < |G|} = ∅.
For values m ≥ |G|, the boundary of AG is constant in m. We conclude:

I Theorem 8. Let X be a set of n entities, in which each entity travels along a piecewise-
linear trajectory of τ edges in R1, and let A be the resulting trajectory arrangement. The
number of distinct maximal groups is at most O(|A|n2) = O(τn4), and the total complexity of
all regions in the parameter space corresponding to these groups is also O(|A|n2) = O(τn4).

In the full version [22] we prove Lemma 9: even for fixed parameters ε, m, and δ, the number
of maximal (m, ε, δ)-groups, for entities moving in R1, may be as large as Ω(τn3). This
strengthens the result of Buchin et al. [9], who established this bound for entities in R2.

I Lemma 9. For a set X of n entities, in which each entity travels along a piecewise-linear
trajectory of τ edges in R1, there can be Ω(τn3) maximal ε-groups.

SoCG 2016
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3 Algorithm

In the following we refer to combinatorially different maximal groups simply as groups. Our
algorithm computes a representation (of size O(|A|n2)) of all groups, which we can use to list
all groups and, given a pointer to a group G, list all its members and the polygon QG ∈ PG.
We assume δ = 0 and m = 1, since the sets of maximal groups for δ > 0 and m > 1 are a
subset of the set for δ = 0 and m = 1.

3.1 Overview
Our algorithm uses the arrangement H located in the (t, ε)-plane. Line segments in H
correspond to the height function of the faces in A. Let a, b ∈ SG(t) be the pair of
consecutive entities in the span of a group G with maximum vertical distance at time t. We
refer to (a, b) as the critical pair of G at time t. The pair (a, b) determines the minimal value
of ε that is required for the group G to be ε-connected at time t. The distance between a
critical pair (a, b) defines an edge of the polygon bounding G in H.

Our representation will consist of the arrangement H in which each edge e is annotated
with a data structure Te, a list L (or array) with the top edge in each group polygon QG ∈ PG,
and an additional data structure S to support reconstructing the grouping polygons. We start
by computing the arrangement H. This takes O(|H|) = O(τn3) time [2]. The arrangement
is built from the set of height-functions of the faces of A. With each edge we store the pair
of edges in A responsible for it.

Given arrangement H we use a sweep line algorithm to construct the rest of the represen-
tation. A horizontal line `(ε) is swept at height ε upwards, and all groups G whose group
polygon QG currently intersects ` are maintained. To achieve this we maintain a two-part
status structure. First, a set S with for each group G the time interval I(G, ε) = QG ∩ `(ε).
Second, for each edge e ∈ H intersected by `(ε) a data structure Te with the sets of entities
whose time interval starts or ends at e, that is, G ∈ Te if and only if I(G, ε) = [s, t] with
s = e ∩ `(ε) or t = e ∩ `(ε). We postpone the implementation of T to Section 3.3. The data
structures support the following operations:

Operation Input Action

Filter(Te, X) A data structure Te
A set of entities X

Create a data structure T ′ = {G∩
X | G ∈ Te}

Insert(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te ∪
{G}.

Delete(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te \
{G}.

Merge(Te, Tf ) Two data structures Te, Tf , belong-
ing to two edges e, f having the
same starting or ending vertex

Create a data structure T ′ = Te ∪
Tf .

Contains(Te, G) A data structure Te
A pointer to a representation of G
ending or starting on edge e

Test if Te contains set G.

HasSuperSet(Te, G) A data structure Te
A pointer to a representation of G
ending or starting on edge e

Test if Te contains a set H ⊇ G,
and return the smallest such set if
so.

The end points of the time interval I(G, ε) = [start(G, ε), end(G, ε)] vary non-stop along
the sweep. For each group G, the set S instead stores the edges e and f of H that contain
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the starting time start(G, ε) and ending time end(G, ε), respectively, and pointers to the
representation of G in Te and Tf . We refer to e and f as the starting edge and ending edge
of G. In addition, we store with each interval I(G, ε) a pointer to the previous version of the
interval I(G, ε′) if (and only if) the starting time (ending time) of G changed to edge e (edge
f) at ε′. Note that updates for both S and T occur only when a vertex is hit by the sweep
line `(ε). For all unbounded groups we add I(G,∞) to L after the sweep line algorithm.

3.2 Sweepline Events
The sweep line algorithm results in four different vertex events (see Fig. 4). The Extend-
event has a symmetrical version in which uu′ and ww′ both have a negative incline. We
describe how to update our hypothetical data structures in all cases.

Case I - Birth. Vertex v is a local minimum of one of the functions ha, with a ∈ X (see
Fig. 4(a)). When the sweep line intersects v a new maximal group G is born. We can find
the maximal group spawned in O(|G|) time by checking which trajectories are ε-connected
for this value of t and ε. To this end we traverse the (vertical decomposition of) A starting
at the entities defining v.

Case II - Extend. Vertex v is the intersection of two line segments sab = uu′ and scd = ww′,
both with a positive incline (see Fig. 4(b)). The case in which sab and scd have negative
incline can be handled symmetrically. Assume without loss of generality that scd is steeper
than sab. We start with the following observation:

I Observation 10. None of the groups arriving on edge (w, v) continue on edge (v, u′).

Proof. Let G be a group that arrives at v using edge (w, v). As G uses (w, v), it must
contain entities both above and below the face F defined by critical pair (c, d). We know
that uε and wε are strictly smaller than vε and ε is never smaller than zero. Thus, vε is
strictly positive and F has a strictly positive height at t. Therefore, G still contains entities
above and below F after time t. But then the critical pair (c, d) is still part of G and scd is a
lower bound for the group. It follows that G must use edge (v, w′). J

(b) Extend

(c) Join

(a) Birth

(d) Union
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Figure 4 The different types of vertex events shown both in the arrangement A and in H. The
Extend event has a horizontally symmetric case.
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We first compute the groups on outgoing edge (v, u′). By Observation 10 all these
groups arrive on edge (u, v). In particular, they are the maximal size subsets from T(u,v) for
which all entities lie below entity d at time t, that is, T(v,u′) = Filter(T(u,v), below(d, t)),
where below(y, t) = {x | x ∈ X ∧ x(t) < y(t)}. For each group G in T(v,u′) we update the
time-interval in S. If G was dominated by a maximal group H ⊃ G on incoming edge (u, v),
we insert a new time interval with starting edge f = start(H, ε) and ending edge (v, u′) into
S, and insert G into Tf . Note that G and H indeed have the same starting time: G is a
subset of H, and is thus ε-connected at any time where H is ε-connected. Since G was not
maximal before, it did not start earlier than H either.

The groups from T(u,v) that contain entities on both sides of critical pair (c, d), continue
onto edge (v, w′). Let T ′ denote these groups. We update the interval I(G) in S for each
group G ∈ T ′ by setting the ending edge to (v, w′).

Next, we determine which groups from T(w,v) die at v. A maximal group G ∈ T(w,v) dies
at v if there is a group H on (v, w′) that dominates G. Any such group H must arrive at v
by edge (u, v). Hence, for each group G ∈ T(w,v) we check if there is a group H ∈ T ′ with
H ⊃ G and I(H) ⊇ I(G). For each of these groups we remove the interval I(G, ε) from S,
add I(G, ε) to L, and delete the set G from the data structure Tf , where f is the starting
edge of G (at height ε).

The remaining (not dominated) groups from T(w,v) continue onto edge (v, w′). Let T ′′
denote this set. We obtain T(v,w′) by merging T ′ and T ′′, that is, T(v,w′) = Merge(T ′, T ′′).
Since we now have the data structures T(v,u′) and T(v,w′), and we updated S accordingly, our
status structure again reflects the maximal groups currently intersected by the sweep line.

Case III - Join. Vertex v is a local maximum of one of the functions ha, with a ∈ X
(see Fig. 4(c)). Two combinatorially different maximal groups Gu and Gw with the same
set of entities die at v (and get replaced by a new maximal group G∗) if and only if Gu
is a maximal group in T(u,v) and Gw is a maximal group in T(w,v). We test this with
a call to Contains(T(w,v), Gu) for each group Gu ∈ T(u,v). Let G be a group in T(u,v),
and let H ∈ T(w,v) be the smallest supergroup of G, if such a group exists. At v the
group G will immediately extend to the ending edge of H. We can find H by using a
HasSuperSet(T(w,v), G) call. If H exists we insert G into Te, and update I(G, ε) in S
accordingly. We process the groups G in T(w,v) that have a group H ∈ T(u,v) whose starting
time jumps at v analogously.

Case IV - Union. Vertex v is the intersection of a line segment sab = uu′ with positive
incline and a line segment scd = ww′, with negative incline (see Fig. 4(d)). The Union
event is a special case of the Birth event. Incoming groups on edge (u, v) are below the line
segment scd and, hence, can not contain any elements that are above c. As a consequence
the line segment scd does not limit these groups and for a group G ∈ T(u,v) we can safely
add it to T(v,u′). We also update the interval I(G) in S by setting the ending edge to (v, u′).
An analogous argument can be made for groups arriving on edge (w, v).

Furthermore a new maximal group is formed. Let H be the set of all entities ε-connected
to entity a at time t. We insert H into T(v,u′) and T(v,w′) and we insert a time interval I(H)
into S with starting edge (v, w′) and ending edge (v, u′).

3.3 Data Structure
We can implement S using any standard balanced binary search tree, the only requirement
is that, given a (representation of) set G in a data structure Te, we can efficiently find its
corresponding interval in S.
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The data structure Te. We need a data structure T = Te that supports Filter, Insert,
Delete, Merge, Contains, and HasSuperSet efficiently. We describe a structure of size
O(n), that supports Contains and HasSuperSet in O(logn) time, Filter in O(n) time,
and Insert and Delete in amortized O(log2 n) time. In general, answering Contains and
HasSuperSet queries in a dynamic setting is hard and may require O(n2) space [24].

I Lemma 11. Let G and H be two non-empty ε-groups that both end at time t. We have:

(G ∩H 6= ∅ ∧ |G| ≤ |H|)⇐⇒ G ⊆ H ∧G 6= ∅.

We implement T with a tree similar to the grouping-tree used by Buchin et al. [9]. Let
{G1,.., Gk} denote the groups stored in T , and let X ′ =

⋃
i∈[1,..,k] Gi denote the entities in

these groups. Our tree T has a leaf for every entity in X ′. Each group Gi is represented by
an internal node vi. For each internal node vi the set of leaves in the subtree rooted at vi
corresponds exactly to the entities in Gi. By Lemma 11 these sets indeed form a tree. With
each node vi, we store the size of the group Gi, and (a pointer to) an arbitrary entity in Gi.
Next to the tree we store an array containing for each entity a pointer to the leaf in the tree
that represents it (or Nil if the entity does not occur in any group). We preprocess T in
O(n) time to support level-ancestor (LA) queries as well as lowest common ancestor (LCA)
queries, using the methods of Bender and Farach-Colton [4, 5]. Both methods work only for
static trees, whereas we need to allow updates to T as well. However, as we need to query
Te only when processing the upper end vertex of e, we can be lazy in updating Te. More
specifically, we delay all updates, and simply rebuild Te when we handle its upper end vertex.

HasSuperSet and Contains queries. Using LA queries we can do a binary search on the
ancestors of a given node. This allows us to implement both HasSuperSet(Te, G) queries
and Contains(Te, G) in O(logn) time for a group G ending or starting on edge e. Let a be
an arbitrary element from group G. If the datastructure Te contains a node matching the
elements in G then it must be an ancestor of the leaf containing a in T . That is, it is the
ancestor that has exactly |G| elements. By Lemma 11 there is at most one such node. As
ancestors only get more elements as we move up the tree, we find this node in O(logn) time
by binary search. Similarly, we can implement the HasSuperSet function in O(logn) time.

Insert, Delete, and Merge queries. The Insert, Delete, and Merge operations on Te
are performed lazily; We execute them only when we get to the upper vertex of edge e. At
such a time we may have to process a batch of O(n) such operations. We now show that we
can handle such a batch in O(n log2 n) time.

I Lemma 12. Let G1,.., Gm be maximal ε-groups, ordered by decreasing size, such that: (i)
all groups end at time t, (ii) G1 ⊇ Gi, for all i, (iii) the largest group G1 has size s, and (iv)
the smallest group has size |Gm| > s/2. We then have that Gi ⊇ Gi+1 for all i ∈ [1,..,m− 1].

I Lemma 13. Given two nodes vG ∈ T and vH ∈ T ′, representing the set G respectively H,
both ending at time t, we can test if G ⊆ H in O(1) time.

I Lemma 14. Given m = O(n) nodes representing maximal ε-groups G1,.., Gm, possibly in
different data structures T1,.., Tm, that all share ending time t, we can construct a new data
structure T representing G1,.., Gm in O(n log2 n) time.

Proof. Sort the groups G1,.., Gm on decreasing group size. Let G1 ∈ T1 denote the largest
group and let it have size s. We assume for now that G1 is a superset of all other groups.
If this is not the case we add a dummy group G0 containing all elements. We process the
groups in order of decreasing size. By Lemma 12 it follows that all groups G1,.., Gk that are
larger than s/2 form a path P in T , rooted at G.
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Ci

G

Figure 5 T is built top-down in several rounds.
Edges and nodes are colored by round.

For all remaining (small) groups Gi we
then find the smallest group in P that is a
super set of Gi. By Lemma 13, we can test
in O(1) time if a group H ∈ P is a super-
group of Gi by performing a LCA query in
the tree H originated from. We can then
find the smallest super set of Gi in O(logn)
time using a binary search. Once all groups
are partitioned into clusters with the same
ancestor Gi, we process the clusters recur-
sively. When the largest group in a cluster
has size one we are done (see Fig. 5).

The algorithm goes through a series of rounds. In each round the remaining clusters
are handled recursively. Because all (unhandled) clusters jointly contain no more than O(n)
groups, each round takes only O(n logn) time in total. As in each round the size of the
largest group left is reduced by half, it follows that after O(logn) rounds the algorithm must
has constructed the complete tree. Updating the array with pointers to the leaves takes O(n)
time, as does rebuilding the tree for future LA and LCA queries. J

The final function Filter can easily be implemented in linear time by pruning the tree from
the bottom up. We thus conclude:

I Lemma 15. We can handle each event in O(n log2 n) time.

3.4 Maximal Groups

Reconstructing the grouping polygons. Given a group G, represented by a pointer to the
top edge of QG in L, we can construct the complete group polygon QG in O(|QG|) time, and
list all group members of G in O(|G|) time. We have access to the top edge of QG. This
is an interval I(G, ε̂) in S, specifically, the version corresponding to ε̂, where ε̂ is the value
at which G dies as a maximal group. We then follow the pointers to the previous versions
of I(G, ·) to construct the left and right chains of QG. When we encounter the value ε̌ at
which G is born, these chains either meet at the same vertex, or we add the final bottom
edge of QG connecting them. To report the group members of G, we follow the pointer to
I(G, ε̂) in S. This interval stores a pointer to its starting edge e, and to a subtree in Te of
which the leaves represent the entities in G.

Analysis. The list L contains O(g) = O(|A|n2) entries (Theorem 8), each of constant size.
The total size of all S’s is O(|H|n): at each vertex of H, there are only a linear number of
changes in the intervals in S. Each edge e of H stores a data structure Te of size O(n). It
follows that our representation uses a total of O(|H|n) = O(|A|n2) space. Handling each of
the O(|H|) nodes requires O(n log2 n) time, so the total running time is O(|A|n2 log2 n).

I Theorem 16. Given a set X of n entities, in which each entity travels along a trajectory
of τ edges, we can compute a representation of all g = O(|A|n2) combinatorial maximal
groups G such that for each group in G we can report its grouping polygon and its members in
time linear in its complexity and size, respectively. The representation has size O(|A|n2) and
takes O(|A|n2 log2 n) time to compute, where |A| = O(τn2) is the complexity of the trajectory
arrangement.
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4 Data Structures for Maximal Group Queries

In this section we present data structures that allow us to efficiently obtain all groups for a
given set of parameter values. Throughout this section, n denotes the number of entities
considered, τ the number of vertices in any trajectory, k the output complexity, i.e. the
number of groups reported, g the number of maximal groups, g′ the maximum number of
maximal groups for a given (fixed) value of ε, and Π the total complexity of the regions
corresponding to the g combinatorially different maximal groups. So we have g′ = O(τn3)
and g ≤ Π = O(τn4). When g′, g, or Π appear as the argument of a logarithm, we write
O(lognτ). We show that we can store all groups in a data structure of size O(Π lognτ logn)
that can be built in O(Π log2 nτ logn) time, and allows reporting all (m, ε, δ)-groups in
O(log2 nτ logn+ k) time. We use the following three-level tree to achieve this.

distance

d
u
ra
ti
o
n

ε

δ

Figure 6 The functions DG expressing the
duration of groupG as a function of ε. Assuming
all groups have size at least m, all (m, ε, δ)-
groups intersect the upward vertical half-ray
starting in point (ε, δ).

On the first level we have a balanced binary
tree with in the leaves the group sizes 1...n.
Each internal node v corresponds to a range
Rv of group sizes and stores all groups whose
size lies in the range Rv. Let Gv denote this
set of groups, and for each such group let DG

denote the duration of group G as a function
of ε. The functions DG are piecewise-linear,
δ-monotone, and may intersect (see Fig. 6).
By Theorem 8 the total complexity of these
functions is O(Π). We store all functions DG,
with G ∈ Gv, in a data structure that can
answer the following polyline stabbing queries
in O(log2 nτ + k) time: Given a query point
q = (ε, δ), report all polylines that pass above point q, that is, for which DG(ε) ≥ δ. Thus,
given parameters m, ε, and δ, finding all (m, ε, δ)-groups takes O(log2 nτ logn+ k) time.

We build a segment tree storing the (ε-extent of the) individual edges of all polylines
stored at v. An internal node u of the segment tree corresponds to an interval I(u), and
stores the set of edges Ints(u) that completely span I(u). Hence, with respect to u, we can
consider these segments as lines. For a query with a point q, we have to be able to report
all (possibly intersecting) lines from Ints(u) that pass above q. We use a duality transform
to map each line ` to a point `∗ and query point q to a line q∗. The problem is then to
report all points `∗ in the half-plane below q∗. Such queries can be answered in O(log h+ k)
time, using O(h) space and O(h log h) preprocessing time, where h is the number of points
stored [11]. It follows that we can find all k polylines that pass above q in O(log2 nτ + k)
time, using O(Π lognτ) space, and O(Π log2 nτ) preprocessing time. We conclude:

I Theorem 17. Given parameters m, ε, and δ, we can build a data structure of size
O(Π lognτ logn), using O(Π log2 nτ logn) preprocessing time, which can report all (m, ε, δ)-
groups in O(log2 nτ logn+ k) time, where k is the output complexity.

In the full version [22], we also describe data structures for the interactive exploration of
the data. Here, we have all (m, ε, δ)-groups, for some parameters m, ε, and δ, and we want
to change (some of) the parameters. Say to m′, ε′, and δ′, respectively. This requires us
to solve symmetric difference queries, in which we want to efficiently report all maximal
(m, ε, δ)-groups that are no longer maximal for parameters m′, ε′, and δ′, and all maximal
(m′, ε′, δ′)-groups that were not maximal for parameters m, ε, and δ. That is, we wish to
report G(m, ε, δ) ∆G(m′, ε′, δ′). The following theorem summarizes our results.
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I Theorem 18. Let (m, ε, δ) and (m′, ε′, δ′) be two configurations of parameters. In
O(P (Π, g′, n)) time we can build a data structure of size O(S(Π, g′, n)) for symmetric differ-
ence queries, that is, we can report all groups in G(ε,m, δ) ∆G(ε′,m′, δ′), in O(Q(Π, g′, n, k))
time. In these results Π denotes the total complexity of all combinatorially different maximal
groups (over all values ε), g′ the number of maximal groups for a fixed value ε, n the number
of entities, τ the number of vertices in a trajectory, and k the output complexity. The
functions P , S, and Q depend on which of the parameters are allowed to change (other
parameters are assumed to be fixed and known at preprocessing time). We have

Variable Param. Query time Q(Π, g′, n, k) Space S(Π, g′, n) Preproc. P (Π, g′, n)

Changing one parameter at a time

δ lognτ + k g′ lognτ g′ lognτ
m lognτ + k g′ lognτ g′ lognτ
ε lognτ + k Π lognτ Π lognτ
δ,m lognτ + k g′ lognτ g′ lognτ
ε,m log2 nτ + k Π log2 nτ Π log2 nτ

ε, δ
√
g′2log∗ nτ log2 nτ + k Π log2 nτ Π log3 nτ

ε, δ,m
√
g′2log∗ nτ log2 nτ logn+ k Π log2 nτ Π log3 nτ

Changing multiple parameters at the same time

δ,m lognτ + k g′ lognτ g′ lognτ
ε,m log2 nτ + k Π log2 nτ Π log2 nτ

ε, δ
√
g′2log∗ nτ log3 nτ + k Π log2 nτ Π log3 nτ

ε, δ,m
√
g′2log∗ nτ log3 nτ log2 n+ k Π log2 nτ log2 n Π log3 nτ log2 n

5 Entities Moving in Rd

We now describe how our results can be extended to entities moving in Rd, for any constant
dimension d.

5.1 Bounding the Complexity
Recall that X (t) denotes the locations of the entities at time t. We still consider the (t, ε)-
plane in P, and the regions AG, for subsets G ⊆ X , in which set G is alive. Such a region is
still bounded from below by a function fG that expresses the minimum distance for which G
is ε-connected. We again consider the arrangement H of these functions fG, over all sets G.

Let H′′ be the arrangement of all pairwise distance functions hab(t) = ‖a(t)b(t)‖. For any
subset of entities G and any time t, fG(t) = ‖a(t)b(t)‖ for some pair of entities a and b. Thus,
H is a sub-arrangement of H′′. This immediately gives an O(τn4) bound on the complexity
of H. We instead show that H has complexity at most O(τn3β4(n)), where βs(n) = λs(n)/n,
and λs(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols.
Using exactly the same argument as in Lemma 6 we then get a bound of O(τn4β4(n)) on
the number of combinatorially different groups.

Let E(t) be the Euclidean minimum spanning tree (EMST) of the points in X (t).

I Observation 19. A subset of entities G ⊆ X is ε-connected at time t if and only if for
any two entities p, q ∈ G the longest edge in the Euclidean minimum spanning tree E(t) on
the path between p and q has length at most ε.
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e

EG(t)

Figure 7 E(t) and its minimum
subtree EG(t) (red edges) for a
subset of entities G (red vertices).
Edge e determines the minimum ε

for which G is ε-connected at t.

Specifically, let EG(t) be the minimum (connected) subtree
of E(t) containing all points in G(t), and let ε̌G(t) be the
length of the longest edge e in EG(t) (see Fig. 7). We
have that G is an ε-group for all ε ≥ ε̌G(t), and that
fG(t) = max(a,b)∈EG(t) ‖a(t)b(t)‖.

It follows from Observation 19 that we are interested in
the distance function hab on the time intervals during which
(a, b) is part of the EMST. Hence, we need to consider
only the arrangement of such partial functions. It is,
however, difficult to bound the complexity of the resulting
arrangement directly. Instead, we consider hab only during
those time intervals in which (a, b) is an edge in the Yao-
graph [23]. Let H′ be the resulting arrangement. Since
the EMST is a subgraph of the Yao-graph it follows that H is a sub-arrangement of H′ [23].

I Lemma 20. H′ has complexity O(τn3β4(n)).

Proof. Fix an entity a, and consider the movement of the other entities with respect to a.
This gives us a set of (piecewise linear) trajectories. Entity a is fixed at the origin. Partition
this space into k = O(2d) = O(1) equal size polyhedral cones C1,.., Ck that have their
common apex at the origin. For each such cone Ci, let ηia(t) denote the distance from a to
the nearest entity in the cone. It is easy to show that ηia is piecewise hyperbolic, and consists
of O(τλ4(n)) pieces [17].

Let H∗ be the arrangement of all functions ηia, over all entities a ∈ X and all cones Ci.
The total number of pieces (hyperbolic arcs), over all entities and all cones, is O(τnλ4(n)).
Partition time into O(τλ4(n)) time intervals, with O(n) pieces each. This may require
splitting some of the pieces, but the total number of pieces remains O(τnλ4(n)). In each
time interval we now have O(n) hyperbolic arc pieces, that intersect at most O(n2) times in
total. It follows that H∗ has complexity O(τλ4(n)n2) = O(τn3β4(n)).

Fix a time t, and consider the graph Y (t) that has an edge (a, b) if and only if b is the
nearest neighbor of a in one of the cones Ci at time t, that is, ‖a(t)b(t)‖ = ηia(t). Indeed,
Y (t) is the Yao-graph of the entities at time t [23]. It follows that H∗ = H′. J

Since H is a sub arrangement of H′, it follows that H also has complexity O(τn3β4(n)). Using
exactly the same argument as in Lemma 6 we then get that the number of combinatorially
different maximal groups is O(τn4β4(n)). We conclude:

I Theorem 21. Let X be a set of n entities, in which each entity travels along a piecewise-
linear trajectory of τ edges in Rd, for any constant d. The number of maximal combinatorial
groups as well as the total complexity of all their group polygons is at most O(τn4β4(n)).

5.2 Algorithm
We can almost directly apply our algorithm from Section 3 in higher dimensions as well.
Instead of the arrangement H, we now use H′. The only differences involve discovering
the set entities involved in a Birth-event, and splitting the set of entities in case of an
Extend-event. Let v denote the vertex of H′ we are processing. We use that at time vt,
H′ encodes the Yao-graph Y . Using a breadth first search in Y we can find the entities
connected to v. If an edge has length larger than ε we stop the exploration along it. Since Y
is planar, and has O(n) vertices this takes O(n) time. This does not affect the running time,
hence we get the same result as in Theorem 16 for entities moving in Rd, for any constant d.
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5.3 Data Structures

Finding all maximal (m, ε, δ)-groups. We use the same approach as in Section 4. However,
the functions durationG are no longer (piecewise) linear functions in ε. Let startG(ε) = f−1(ε)
and endG(ε) = h−1(ε) be some hyperbolic functions f and h corresponding to curves in H.
We have that durationG(ε) = endG(ε)− startG(ε). The function durationG corresponds to a
piecewise curve with pieces defined by polynomials of degree at most four. Hence, we have
to solve the following sub-problem: given a set of g′ algebraic curves of degree at most four,
and query point q, report all curves that pass above q.

We can solve such queries as follows. We transform the curves into hyperplanes in R`,
where ` is the linearization dimension. We then apply a duality transform, after which
the problem can be solved using a half-space range query. Since we have curves of degree
at most four in R2, the linearization dimension is seven: the set of points above a curve
can be described using a seven-variate polynomial (the five coefficients of the degree four
curve, and the two coordinates of the point) [1]. It follows that we can find all curves above
query point q in O(g′1−1/b7/2c polylognτ + k) = O(g′2/3 polylognτ + k) time, using linear
space [19]. Reporting all maximal (m, ε, δ)-groups thus takes O(g′2/3 polylognτ + k) time,
using O(Π lognτ logn) space and O(Π log2 nτ logn) preprocessing time.

Alternatively, we can maintain the upper envelope of the curves in a dynamic data
structure. To solve a query, we repeatedly delete the curve realizing the upper envelope at
qε. This allows us to find all (m, ε, δ)-groups in O(kβ4(g′)2 polylognτ) time [10].

Symmetric Difference Queries. Only the versions of the problem that involve changing
both ε and δ are affected. Instead of piecewise linear functions durationG we again have
piecewise curves of degree at most four. We use a similar approach as above to find the
curves that intersect a vertical or horizontal query segment in O(g′2/3 polylognτ + k) time.
Thus, we essentially replace the

√
g′ terms in Theorem 18 by a g′2/3 term.
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