Grouping Time-varying Data for Interactive Exploration

Arthur van Goethem Bettina Speckmann Frank Staals

Marc van Kreveld Maarten Löffler

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

3) Publish a paper about ALG

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 \checkmark (*m*, ε , δ)-group

- $m = \min \text{ size}$
- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 \checkmark (*m*, ε , δ)-group

- $m = \min \text{ size}$
- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

✓ (m, ε, δ)-group

- $m = \min \text{ size}$
- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 \checkmark (*m*, ε , δ)-group

- $m = \min \text{ size}$ $\varepsilon = \max \text{ dist}$
- $\delta = \min duration$
- ✓ Running time: $O(n^3 \tau)$
 - n = #trajectories
 - $\tau = {\rm trajectory} \ {\rm length}$
- ✓ Trajectory Grouping Structure [WADS 2013]

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

 $\overrightarrow{} \Longrightarrow \cancel{x}$

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 \checkmark (*m*, ε , δ)-group

- $m = \min \text{ size}$ $\varepsilon = \max \text{ dist}$
- $\delta = \min duration$
- ✓ Running time: $O(n^3 \tau)$
 - n = #trajectories
 - $\tau = {\rm trajectory} \ {\rm length}$
- ✓ Trajectory Grouping Structure [WADS 2013]

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input)

 $\overrightarrow{} \Longrightarrow \cancel{x}$

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 $\checkmark (m, \varepsilon, \delta) - \text{group}$ $m = \min \text{size}$

- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$
- ✓ Running time: $O(n^3 \tau)$
 - n = #trajectories
 - $\tau = {\rm trajectory} \ {\rm length}$
- ✓ Trajectory Grouping Structure [WADS 2013]

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input, $\alpha, ..., \eta$)

 $\overrightarrow{} \Longrightarrow \cancel{x}$

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

Assumption:

The practicioner knows the right parameter values.

 $\checkmark (m, \varepsilon, \delta) - \text{group}$ $m = \min \text{size}$

- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$
- ✓ Running time: $O(n^3 \tau)$
 - n = #trajectories
 - $\tau = {\rm trajectory} \ {\rm length}$
- ✓ Trajectory Grouping Structure [WADS 2013]

Detecting maximal groups in trajectory data

1) Define an $(\alpha, \beta, ..., \eta)$ -pattern

2) Design an efficient algorithm ALG(Input, $\alpha, ..., \eta$)

 $\overrightarrow{}$

- 3) Publish a paper about ALG
- 4) Be happy about 3)
- 5) Implement ALG and give it to a practicioner

 $\checkmark (m, \varepsilon, \delta) - \text{group}$ $m = \min \text{size}$

- $\varepsilon = \max \operatorname{dist}$
- $\delta = \min duration$
- ✓ Running time: $O(n^3 \tau)$
 - n = #trajectories $\tau =$ trajectory length
- ✓ Trajectory Grouping Structure [WADS 2013]

 $\delta = \delta_1 \blacksquare \llbracket [t_4, t_6]$

The practicioner does not know the right parameter values

 \implies We need to be able to change the parameters efficiently

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

- Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups
- Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

- Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups
- Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

- Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups
- Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?

2) When are two (maximal) groups different?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

• Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups

 t_1

t3

• Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

 $G = \blacksquare$ is a (m, ε, δ) -group on $I = [t_1, t_3]$

1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?

2) When are two (maximal) groups different?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

• Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups

 $-t_{\alpha}$

L1

 $t_3 + t_\beta$

• Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

$$G = \blacksquare$$
 is a (m, ε, δ) -group on $I = [t_1, t_3]$
 \blacksquare is a $(m, \varepsilon', \delta)$ -group on $I' = [t_1 - t_\alpha, t_3 + t_\beta]$
Intuitively, (G, I) and (G, I') are the same group.

1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?

2) When are two (maximal) groups different?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

• Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups

 $-t_{\alpha}$

 $t_3 + t_\beta$

• Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

$$G = \blacksquare is a (m, \varepsilon, \delta) \text{-group on } I = [t_1, t_3]$$
$$\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I' = [t_1 - t_\alpha, t_3 + t_\beta]$$
Intuitively, (G, I) and (G, I') are the same group.

- 1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?
- 2) When are two (maximal) groups different?
- 3) How many different maximal groups, over all parameters?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

• Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups

 $-t_{\alpha}$

 $t_3 + t_\beta$

• Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

$$G = \blacksquare is a (m, \varepsilon, \delta) \text{-group on } I = [t_1, t_3]$$
$$\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I' = [t_1 - t_\alpha, t_3 + t_\beta]$$
Intuitively, (G, I) and (G, I') are the same group.

- 1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?
- 2) When are two (maximal) groups different?
- 3) How many different maximal groups, over all parameters?
- 4) How do we compute them?

Goal: Change parameters (m, ε, δ) to $(m', \varepsilon', \delta')$

 \Longrightarrow Report only the maximal groups that have changed

• Maximal (m, ε, δ) groups that are not maximal $(m', \varepsilon', \delta')$ groups

 $-t_{\alpha}$

 $t_3 + t_\beta$

• Maximal $(m', \varepsilon', \delta')$ groups that are not maximal (m, ε, δ) groups

$$G = \blacksquare$$
 is a (m, ε, δ) -group on $I = [t_1, t_3]$
 \blacksquare is a $(m, \varepsilon', \delta)$ -group on $I' = [t_1 - t_\alpha, t_3 + t_\beta]$
Intuitively, (G, I) and (G, I') are the same group.

- 1) How do we represent all maximal groups s.t. we can efficiently change (m, ε, δ) ?
- 2) When are two (maximal) groups different?
- 3) How many different maximal groups, over all parameters?
- 4) How do we compute them?

 $G = \blacksquare is a (m, \varepsilon, \delta) \text{-group on } I = [t_1, t_3]$ $\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I' = [t_1 - t_\alpha, t_3 + t_\beta]$ Intuitively, (G, I) and (G, I') are the same group.

 $G = \blacksquare is a (m, \varepsilon, \delta) \text{-group on } I = [t_1, t_3]$ $\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I' = [t_1 - t_\alpha, t_3 + t_\beta]$ Intuitively, (G, I) and (G, I') are the same group. $\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I'' = [t, t'']$

Intuitively, (G, I') and (G, I'') are different groups.

 $G = \blacksquare is a (m, \varepsilon, \delta) \text{-group on } I = [t_1, t_3]$ $\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I' = [t_1 - t_\alpha, t_3 + t_\beta]$ Intuitively, (G, I) and (G, I') are the same group. $\blacksquare is a (m, \varepsilon', \delta) \text{-group on } I'' = [t, t'']$

Intuitively, (G, I') and (G, I'') are different groups.

■ is a $(m, \varepsilon_>, \delta)$ -group on $I_> \supset I \cup I'$ Intuitively, $(G, I_>)$ is different from (G, I') and from (G, I'')

 \mathbb{R}^1

m = 1

 $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

G = some of entites

 $\begin{array}{l} m = 1 \\ \delta = 0 \end{array} \qquad \qquad \text{Consider region } A_G \text{ s.t.:} \end{array}$

 \mathbb{R}^1

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

G = some of entites

 $\begin{array}{l} m = 1 \\ \delta = 0 \end{array} \qquad \qquad \text{Consider region } A_G \text{ s.t.:} \end{array}$

 \mathbb{R}^1

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

G = some of entites

 \mathbb{R}^1

m = 1

 $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

- G =some of entites $H \supset G$
- Consider region A_G s.t.:

 \mathbb{R}^1

m = 1

 $\delta = 0$

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

m = 1 $\delta = 0$ Consider region A_G s.t.:

 \mathbb{R}^1

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

Consider region A_G s.t.:

 \mathbb{R}^1

m = 1

 $\delta = 0$

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

 \mathbb{R}^1

m = 1

 $\delta = 0$

- Consider region A_G s.t.:
 - $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

time

G = some of entites

 \mathbb{R}^1

m = 1

 $\delta = 0$

Consider region A_G s.t.:

 $(\delta, \varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

time

G = some of entites

 \mathbb{R}^1

m = 1

 $\delta > 0$

Consider region A_G s.t.:

 $(\delta, \varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

G = some of entites

 \mathbb{R}^1

m = 1

 $\delta > 0$

Consider region A_G s.t.:

 $(m, \delta, \varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

time

G = some of entites

 \mathbb{R}^{d}

m = 1

 $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

3) How many combinatorially different group		
	\mathbb{R}^1	\mathbb{R}^{d}
#combinatorially diff. maximal groups	$O(n^4 au)$	
#maximal (<i>m</i> , ε , δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]

n = #trajectories $\tau =$ trajectory length

3) How many combinatorially different grou		
	\mathbb{R}^1	\mathbb{R}^{d}
#combinatorially diff. maximal groups	$O(\mathcal{A} n^2)$	
#maximal (m, ε, δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]

n = #trajectories $\tau =$ trajectory length A = trajectory arrangement

3) How many combinatorially different grou		
	\mathbb{R}^1	\mathbb{R}^{d}
#combinatorially diff. maximal groups	$O(\mathcal{A} n^2)$	$O(n^4 aueta_4(n))$
#maximal (m, ε, δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]

n = #trajectories $\tau =$ trajectory length $\mathcal{A} =$ trajectory arrangement $\beta_s(n) = \lambda_4(n)/n$

3) How many combinatorially different groups are there?			
	\mathbb{R}^1	\mathbb{R}^{d}	
#combinatorially diff. maximal groups	$O(\mathcal{A} n^2)$	$O(n^4 au eta_4(n))$	
#maximal (m, ε, δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]	
4) How do we compute them?			
Running time	$O(\mathcal{A} n^2\log^2 n)$	$O(n^4 aueta_4(n)\log^2 n)$	

n = #trajectories $\tau =$ trajectory length $\mathcal{A} =$ trajectory arrangement $\beta_s(n) = \lambda_4(n)/n$

3) How many combinatorially different groups are there?				
	\mathbb{R}^1	\mathbb{R}^{d}		
#combinatorially diff. maximal groups	$O(\mathcal{A} n^2)$	$O(n^4 aueta_4(n))$		
#maximal (<i>m</i> , ε , δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]		
4) How do we compute them?				
Running time	$O(\mathcal{A} n^2\log^2 n)$	$O(n^4 au eta_4(n) \log^2 n)$		

1) How do we represent the	em s.t. we can efficiently	change (n	n, ε, δ)?
		Update t	ime
Change parameters	$O(\log^c(n\tau) + k)$	VS	$O(\sqrt{g}\log^c(n au) +$

n = #trajectories $\tau =$ trajectory length $\mathcal{A} =$ trajectory arrangement $\beta_s(n) = \lambda_4(n)/n$ k = output size g = #maximal groups (for fixed ε)

3) How many combinatorially different groups are there?			
	\mathbb{R}^1	\mathbb{R}^{d}	
#combinatorially diff. maximal groups	$O(\mathcal{A} n^2)$	$O(n^4 aueta_4(n))$	
#maximal (<i>m</i> , ε , δ)-groups	$\Omega(n^3 au)$	$\Omega(n^3 \tau)$ [WADS 2013]	
4) How do we compute them?			
Running time	$O(\mathcal{A} n^2\log^2 n)$	$O(n^4 aueta_4(n)\log^2 n)$	

1) How do we represent them s.t. we can efficiently change (m, ε, δ) ?			
Update time			
Change parameters	$O(\log^c(n\tau) + k)$	VS	$O(\sqrt{g}\log^c(n\tau)+k)$
Thank you!			

n = #trajectories $\tau =$ trajectory length $\mathcal{A} =$ trajectory arrangement $\beta_s(n) = \lambda_4(n)/n$ k = output size g = #maximal groups (for fixed ε)

1) Tight bounds?

 $|\mathcal{G}|$

#maximal (m, ε, δ) -groups

 $\Omega(n^3\tau)$

 $O(n^4\tau)$

1) Tight bounds?

 $|\mathcal{G}|$ $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

1) Tight bounds?

$ \mathcal{G} $???	$O(n^4 \tau)$
#maximal (<i>m</i> , ε , δ)-groups	$\Omega(n^3 \tau)$	$O(n^3 \tau)$

2)

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

2) What if there are obstacles...?

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

2) What if there are obstacles...?

3) What if we change the definition of group slightly....?

1) Tight bounds?

2) What if there are obstacles...?

3) What if we change the definition of group slightly....?

G = some of entites

 \mathbb{R}^1

m = 1

 $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

time

time

G = some of entites

 \mathbb{R}^1

 $\overline{m} = 1$ $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_G \iff G$ is ε -connected at time t

G = some of entites

 \mathbb{R}^1

 $\overline{m} = 1$ $\delta = 0$

Consider region A_G s.t.:

 $(\varepsilon, t) \in A_{\mathcal{G}} \iff \mathcal{G}$ is ε -connected at time t

time

 \mathcal{H} = arrangement of functions h_a

 f_G is a monotone path in this arrangement

 \mathcal{H} = arrangement of functions h_a

time

 f_G is a monotone path in this arrangement

Lemma. \mathcal{H} has complexity $O(|\mathcal{A}|n)$.

Lemma. Every vertex in \mathcal{H} can be in at most O(n) maximal groups.

 \mathcal{H} = arrangement of functions h_a

time

 f_G is a monotone path in this arrangement

Lemma. \mathcal{H} has complexity $O(|\mathcal{A}|n)$.

Lemma. Every vertex in \mathcal{H} can be in at most O(n) maximal groups.

Theorem. The total complexity of all regions \mathcal{P}_G , over all sets G, is $O(|\mathcal{A}|n^2)$.

G = some of entites

 \mathbb{R}^1

 $\overline{m} = 1$ $\delta = 0$

Consider region A_G s.t.:

 $(m, \delta, \varepsilon, t) \in A_G \iff G$ forms an (m, ε, δ) -group at time t

time

 \implies **Theorem.** The total complexity of all regions \mathcal{P}_G , over all sets G, is $O(|\mathcal{A}|n^2)$.

1) Construct \mathcal{H}

1) Construct \mathcal{H}

2) Use a sweepline algo to compute the regions

1) Construct \mathcal{H}

- 2) Use a sweepline algo to compute the regions
 - 2a) Figure out how to handle each event efficiently

1) Construct \mathcal{H}

2) Use a sweepline algo to compute the regions

2a) Figure out how to handle each event efficiently

Theorem. We can compute \mathcal{G} in $O(|\mathcal{A}|n^2 \log^2 n)$ time.

1) Tight bounds?

 $|\mathcal{G}|$

#maximal (m, ε, δ) -groups

 $\Omega(n^3\tau)$

 $O(n^4\tau)$

1) Tight bounds?

 $|\mathcal{G}|$ $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

Future Work/Open Problems1) Tight bounds? $|\mathcal{G}|$ $nimatical (m, \varepsilon, \delta)$ -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

Lemma. \mathcal{H} has complexity $O(|\mathcal{A}|n)$.

 ${\mathcal E}$

Lemma. Every vertex in \mathcal{H} can be in at most O(n) maximal groups.

1) Tight bounds?

$ \mathcal{G} $???	$O(n^4 \tau)$
#maximal (<i>m</i> , ε , δ)-groups	$\Omega(n^3 \tau)$	$O(n^3 \tau)$

2)
Future Work/Open Problems

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

2) What if there are obstacles...?

Future Work/Open Problems

1) Tight bounds?

 $|\mathcal{G}|$??? $O(n^4\tau)$ #maximal (m, ε, δ) -groups $\Omega(n^3\tau)$ $O(n^3\tau)$

2) What if there are obstacles...?

3) What if we change the definition of group slightly....?

Future Work/Open Problems

1) Tight bounds?

2) What if there are obstacles...?

3) What if we change the definition of group slightly....?