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ε

An algorithm for computing G

Goal: Compute G ⇐⇒ Construct the sets of regions PG for all G .

1) Construct H

2) Use a sweepline algo to compute the regions

2a) Figure out how to handle each event efficiently

Theorem. We can compute G in O(|A|n2 log2 n) time.
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Future Work/Open Problems
Tight bounds?

|G|

#maximal (m, ε, δ)-groups
O(n4τ)

Ω(n3τ)

???

What if there are obstacles...?

1)

2)

3) What if we change the definition of group slightly....?

Thank you!

O(n3τ)


