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Introduction

Chapter1
Movement is a phenomenon that we encounter every day. Almost everyone

and everything in our world moves: we walk to go shopping, we cycle to work,
we drive to the gym, and we fly to a far-away country for our vacation. It is
not just people that move; animals also run, swim, or fly, and even glaciers
and hurricanes move. Modern technology, most notably the Global Positioning
System (GPS), has made tracking such movement easy and cheap. Moreover,
the cost of storing the resulting tracking data –the trajectories– has become
negligible. Because of these developments trajectory data is ubiquitous today.

Researchers in various fields, ranging from animal ecology [24, 32, 66] and
meteorology [108] to traffic control [87] and sports analysis [56], analyze trajec-
tory data. However, unlike collecting and storing movement data, analyzing
movement data is not an easy process. Consider for example Figure 1.1(a),
which shows the trajectories of five laps on a mountain bike track. Even a

(a) (b)

Figure 1.1: (a) The trajectories of five laps on a mountainbike track. (b) Roughly 100 cycling trajectories.
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simple question like “Which two laps are most similar?” is difficult to answer
manually. In this case, we have only five trajectories, and each trajectory follows
more or less the same path. If we have many more trajectories, and they follow
clearly different paths like in Figure 1.1(b), this task becomes virtually impossi-
ble to do manually. Therefore, it is important that we can answer questions like
this automatically. This is the main focus of this thesis; we consider various
trajectory analysis tasks, and present efficient algorithms to perform them auto-
matically. Note that we are mostly interested in the algorithms and techniques
that can perform a certain task, rather than their results on a particular set of
trajectories.

However, the large amount of data is not the only reason why answering
the question from the previous paragraph is difficult. A more fundamental
problem is that it is not clear what “similar” actually means. If we wish to
compute the similarity between trajectories automatically, we need to define
what it means for trajectories to be similar. This is true for all analysis tasks;
before we can perform them automatically, we need to formalize the problem.
An important aspect to this is how we actually define a trajectory itself. There
are various models, which we review in Section 1.2. First, however, we provide a
broad classification of trajectory analysis tasks. The tasks for which we provide
efficient algorithms, are presented in more detail in Section 1.3.

1.1 Overview of Analysis Tasks

There are many different analysis tasks one might want to perform on trajectory
data. Broadly, we distinguish between tasks that are of an exploratory nature,
and tasks for which there is a more concrete and measurable goal. Tasks in
the former category are usually solved using tools and techniques from visual
analytics [11]. The tasks in the latter category may still be very specific to a
particular application or data set. For example, “Find the longest time during
which bird #15 was foraging.”. However, they can usually be reduced to one
or more generic, application-independent tasks, as studied in the areas of
geographic information science (GIS) and computational geometry. We restrict
our attention to these generic, general-purpose tasks, and the algorithms and
approaches to perform them.

Next, we give a short overview of several analysis tasks. Most tasks that we
list involve multiple trajectories, although for some of them variations may
also be applicable to a single trajectory. For example, we may be interested in
finding and clustering movement patterns in a sub-trajectory [79].
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Figure 1.2: A view of
four of the trajecto-
ries from Figure 1.1(a)
that also shows
time. Trajectories
that appear similar
(red and orange) in
Figure 1.1(a) may be
very different when
considering time. An
additional issue is if
and how to align the
trajectories (see e.g.
the green trajectory).

tim
e

Segmentation. Segmentation involves splitting or partitioning a trajectory
into a number of sub-trajectories that have certain characteristics [4, 12, 31,
93, 121]. Important applications for segmentation are detecting mode of
transportation, or classifying the (behavioral) state of the entity that produced
the trajectory.
The characteristics used in segmentation can be based on trajectory attributes
like speed, curvature, or acceleration, but often also include contextual data
such as land-cover.

Similarity. The similarity of two trajectories can be captured by a function that
takes two trajectories and returns a scalar: the higher the value, the higher
the similarity. There are various aspects of the trajectories that need to be
considered when defining a similarity measure. For example, should the
temporal component of the trajectories be taken into account or not? If not,
then we are basically considering shape similarity, a topic well-studied in
pattern matching [5, 6]. If we do incorporate time, how should we handle
trajectories of different duration? Figure 1.2 illustrates this issue.
Similarity is usually viewed as the reciprocal of distance. There are several
common distance measures for trajectories. They usually differ in how they
incorporate time. Examples include the Hausdorff distance [5], Fréchet dis-
tance [6], Dynamic Time Warping [83], time-focused distance [91], and edit
distance [92]. What the right distance measure is depends on the application.
Besides similarity of whole trajectories, one could also define and compute
similarity of sub-trajectories of two trajectories [27], or self-similarity of sub-
trajectories within a single trajectory [79].
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Clustering. Clustering is the process of partitioning trajectories into a (usually
small) number of groups, or clusters, so that within each group the trajecto-
ries are similar, but across different groups they are dissimilar. Trajectory
clustering has been well studied [57, 74, 91].
An important sub-task of clustering is classification [86]. Given a collection of
clusters and a new trajectory, assign the trajectory to one of the clusters. The
use of similarity measures to assist in classification and clustering is clear.
Once a similarity measure is selected, many of the standard clustering meth-
ods for point data can be used for trajectory data as well, like single-linkage
and complete-linkage clustering [75].
For clustering methods like 𝑘-means and 𝑘-medoids, one also needs a way to
compute a representative for each cluster. That is, an algorithm that computes
a specific “typical trajectory” that captures the common properties of the
trajectories in the cluster.

Movement patterns. When we are analyzing a set of trajectories and are inter-
ested in interactions like joint movement or leadership, we speak of movement
patterns in trajectories [41, 59, 76]. Several definitions of flocking [17, 62] and
various other group movements [25, 85, 116] have been given and algorithms
for these have been suggested.

Interesting places. From a collection of trajectories one can identify (small)
places that are visited by many different trajectories, places that are used by
a single moving entity for a long duration, or places where many trajectories
change their movement behavior (e.g., they all pause). Such locations are
called hotspots, popular places [16, 113], stationary regions [116], stay points,
or stops [97, 102].

The analysis tasks that we study in more detail and for which we present
algorithmic solutions are:

• Find a segmentation of a trajectory based on a non-monotone criterion.

• Find hotspots; regions in which the entity spent a large amount of time.

• Find all groups and the grouping structure. A group is a movement
pattern in which sufficiently many entities move together during a suffi-
ciently long time interval. In addition to the groups themselves we also
find the relation between groups, e.g. a large group came into existence
when two smaller groups merged.

• Find a central trajectory: a representative for a set of (similar) trajectories.

We discuss these tasks in more detail in Section 1.3.
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1.2 A Trajectory

Before we give more detailed descriptions of the analysis tasks that we solve, it
is important to define what a trajectory actually is. Throughout the existing
literature, various models and definitions are used. A trajectory describes the
movement of an entity, e.g. a person, car, bird, or hurricane, in time. Hence,
in its purest form, a trajectory 𝒯 is a continuous function mapping time to a
subset of space. If we have a single trajectory, the time 𝕋 can be represented
by the interval [0, 1] ⊂ ℝ without loss of generality. If we have multiple
trajectories, they may have different global start and end times. This means that
the trajectories become partial functions from time, usually some sub-interval
of [0, 𝑐], for some 𝑐 ∈ ℝ, to space.

Which space we have to consider, and how we represent the location of an
entity in that space, depends on the type of entities involved. For simplicity,
we usually represent each entity by a single point. The space in which a person
or hurricane moves is usually just the Euclidean plane ℝ2. For birds and
planes the height may also be important, hence, we may take space to be ℝ3.
Restricted or more complicated versions of space are also possible. For example,
in applications involving car trajectories it is often assumed that cars can travel
only on roads, so the space is the road network. In Chapter 6 we will see a
more complicated space involving arbitrary (planar) obstacles.

We will restrict ourselves to trajectories that are piecewise linear. That is,
throughout this thesis we will consider a trajectory to be a (continuous) piece-
wise linear function mapping time to space.

Even though the movement of the entities is often continuous, the corre-
sponding trajectories are often collected and stored as a sequence of discrete
time-stamped points. In this model one knows the position of the entity only
at these times 𝑡1, .., 𝑡u� . In some versions of this model, it is assumed that in
between two consecutive time steps the entity moves along a straight line
(similar to our model in which we assume that the trajectories are piecewise
linear), in others the movement is really assumed to be discrete, and hence the
entity jumps from its position at time 𝑡u� to its new position exactly at time 𝑡u�+1
(this would correspond to the trajectory being a piecewise constant or partial
function). Since the data is stored in a discrete format and it usually allows
for simpler algorithms, this family of models is very popular in GIS and other
applied fields [70, 77, 80, 88, 117].

A model that is becoming more popular recently is to explicitly model the
uncertainty that is in trajectory data. At the discrete times 𝑡1, .., 𝑡u� at which
we measured the exact position of the entity we represent the trajectory by a
point. In between such times 𝑡u� and 𝑡u�+1, the entity may be anywhere within an
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time

speed

1 2 30 Figure 1.3: The discrete (blue points) and continuous (red line
segments) representations of the speed u� on the trajectory.

uncertainty region 𝑅u� [95]. To bound the size of the uncertainty regions this
model then assumes that the moving entity has bounded speed. Extensions of
this model also incorporate a probability distribution over these uncertainty
regions. A well-known example of such a random movement model is the
Brownian bridges model [69].

The choice of definition influences the results. It is important to note that
the choice of definition can greatly influence the results of an analysis task.
Consider the following example, in which we wish to compute a segmentation
for the input trajectory (the task that we consider in more detail in Chapter 3).
We construct two representations of the same trajectory –one in the continuous
piecewise linear model, the other in the discrete model– for which the number
of segments in an optimal segmentation differs significantly.

We compute a segmentation based on the standard deviation of the speed 𝑠
on the trajectory. We construct the functions representing 𝑠 directly, but note
that it is easy to construct (the representations of) a trajectory realizing these
speeds. For the discrete trajectory, we have the speeds only at discrete times
1, .., 𝑛, hence 𝑠 is defined only at those times. We set 𝑠(𝑡) = 𝑡 for all 𝑡 ∈ 1, … , 𝑛.
For the continuous model, we have the speed at every time 𝑡 ∈ [1

2 , 𝑛 + 1
2
). We

set 𝑠(𝑡) = ⌊𝑡 + 1
2
⌋ for 𝑡 ∈ [1

2 , 𝑛 + 1
2
). Figure 1.3 illustrates these functions.

Suppose we segment on standard deviation with a threshold of 0.499, i.e. a
sub-trajectory is a segment if the standard deviation of the speed on the sub-
trajectory is at most 0.499. In the discrete model we must then take each index
separately, because two consecutive indices give a standard deviation of 0.5.
This only increases if we take longer segments. The segmentation on the con-
tinuous model can take as the first segment the first constant part with 𝑠(𝑡) = 1
and nearly all of the second part with 𝑠(𝑡) = 2. Similarly, the second segment
can take the small remaining part where 𝑠(𝑡) = 2, the entire part where 𝑠(𝑡) = 3,
and nearly all of the part where 𝑠(𝑡) = 4 (but slightly less than before). In this
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example an optimal segmentation in the discrete model requires nearly twice
as many segments as in the continuous model.
Terminology and notation. Throughout this thesis we use 𝒯u� to denote the
trajectory of entity 𝑎. Recall that a trajectory is a function. Hence, 𝒯u�(𝑡), for
some time 𝑡 ∈ 𝕋, denotes the position of entity 𝑎 at time 𝑡. We mostly consider
point entities moving in ℝ2, the position is then a point 𝒯u�(𝑡) = 𝑝 = (𝑝u�, 𝑝u�) in
the plane. We use ‖𝑝𝑞‖ to denote the Euclidean distance between points 𝑝 and
𝑞, and 𝜉u�u�(𝑡) = ‖𝒯u�(𝑡)𝒯u�(𝑡)‖ for the (Euclidean) distance between entities 𝑎 and
𝑏 at time 𝑡. For ease of notation we will simply write 𝒯 to mean the trajectory
of entity 𝑎 if there is only one entity, namely 𝑎. Similarly, we will sometimes
simply write 𝑎(𝑡) to mean the position 𝒯u�(𝑡) of entity 𝑎 at time 𝑡.

We write 𝒯[𝑠, 𝑡] to denote the sub-trajectory starting at time 𝑠 and ending
at time 𝑡; i.e. the function 𝒯 restricted to the time interval [𝑠, 𝑡] ⊆ 𝕋. Our
trajectories are piecewise linear, so they consist of maximal pieces [𝑠u�, 𝑡u�], with
𝑡u� = 𝑠u�+1, such that 𝒯[𝑠u�, 𝑡u�] is a single linear function of the form 𝛾(𝑡) = 𝑎𝑡 + 𝑏,
with 𝑎, 𝑏 ∈ ℝ2. If a function consists of only one piece it is simple. We refer to
the end-points of the pieces as break points.

When 𝒯 has 𝜏 break points the image of 𝒯 consists of 𝜏 − 1 line segments
in the plane, the edges of 𝒯. The end-points of these edges (i.e. the positions
corresponding to break points) are the vertices of 𝒯.

Finally, if we have multiple entities (and thus trajectories) we use 𝑛 to denote
the number of entities and 𝜏 to denote the (maximum) number of vertices in
a single trajectory. If we have only one trajectory we will use 𝑛 to denote the
number of vertices.

1.3 Outline
We present algorithms for four important trajectory analysis tasks: segmenting
a trajectory, finding hotspots, finding groups, and finding a central representa-
tive trajectory. These tasks are presented in the main two parts, Parts II and III,
of this thesis. Part I contains this introduction and the preliminaries, and Part IV
contains some concluding remarks and an overview of future work.

Part II: Analysis Tasks for a Single Trajectory

Chapter 3: Non-Monotone Segmentation

In the trajectory segmentation problem we are given a trajectory that we have
to subdivide into a minimum number of disjoint segments (sub-trajectories) that
all satisfy a given criterion. A criterion is usually defined based on an attribute
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0.0 0.4 0.8 1.0t1 = 0.0
0.1

0.3

0.4

0.6

0.80.9

t9 = 1.0

(a) (b)
time

speed

0.7

Figure 1.4: (a) A trajectory with vertices at times u�1, .., u�9. (b) The speed along the trajectory is a
piecewise-constant function. We may divide the trajectory into three segments with “similar” speed:
[0.0, 0.4], [0.4, 0.8], [0.8, 1.0].

of the trajectory. For example, for the attribute “speed” we could segment the
trajectory such that the minimum and maximum speed within any segment
differ by at most ℎ km/h, or by at most a factor of two (see Figure 1.4). This
way, a segment represents a contiguous sub-trajectory for which a property is
stable in some sense. Such sub-trajectories are often meaningful features of the
trajectory. In the analysis of the trajectories of birds, for example, the goal is
to extract the stretches where a certain activity is observed, such as soaring,
directional flight, sleeping, etc. [99, 115]. Note that in general segments may
start at any position along the trajectory, so a segment does not necessarily start
at a trajectory vertex.

Previous research on similar segmentation problems has been done in animal
movement studies [40, 99] and time-series analysis [9, 35, 112]. These solutions,
however, provide no guarantees for individual segments in the segmentation.
Instead, they are either heuristics or they optimize a global error criterion
when a desired number of segments is specified. In the latter case, dynamic
programming is a common approach [93]. The one exception is the research
of Buchin et al. [31]. They show how to efficiently compute a segmentation
for monotone criteria: criteria with the property that if they hold on a certain
segment, they also hold on every sub-segment of that segment [31].

We present a broader study of the segmentation problem, and suggest a gen-
eral framework for solving it, based on the start-stop diagram: a 2-dimensional
diagram that represents all valid and invalid segments of a given trajectory.
This yields two subproblems: (i) computing the start-stop diagram, and (ii)
finding the optimal segmentation for a given diagram. We show that (ii) is
NP-hard in general. However, we identify properties of the start-stop diagram
that make the problem tractable, and give an efficient algorithm for this case.

We study two concrete non-monotone criteria that arise in practical applica-
tions in more detail. Both are based on a given univariate attribute function 𝑓
over the domain of the trajectory. We say a segment satisfies an outlier-tolerant
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criterion if the value of 𝑓 lies within a certain range for at least a given percent-
age of the length of the segment. For example, instead of requiring that the
difference in speed within a segment is at most ℎ, we require that this is the
case for at least 95% of the time within each segment. A short burst in speed
does not cause more segments in the segmentation with such a criterion. We
say a segment satisfies a standard-deviation criterion if the standard deviation of
𝑓 over the length of the segment lies below a given threshold.

We show that both the outlier-tolerant criterion and the standard-deviation
criterion satisfy the properties that make the segmentation problem tractable.
In particular, we compute an optimal segmentation of a trajectory based on
the outlier-tolerant criterion in 𝑂(𝑛2 log 𝑛 + 𝑘𝑛2) time, and on the standard-
deviation criterion in 𝑂(𝑘𝑛2) time, where 𝑛 is the number of vertices of the
input trajectory and 𝑘 is the number of segments in an optimal solution.

This chapter presents work that was published in:

[12] B. Aronov, A. Driemel, M. van Kreveld, M. Löffler, and F. Staals. “Segmen-
tation of Trajectories on Non-Monotone Criteria.” In: Proc. 24th Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2013, pp. 1897–1911

Chapter 4: Finding Hotspots

We study one of the basic tasks in moving object analysis, namely the location
of hotspots. A hotspot is a (small) region in which an entity spends a significant
amount of time. We distinguish several versions of the problem of finding
square-shaped hotspots. The problems we consider are:

1. The size of the square is fixed and we wish to find the placement that
maximizes the time the entity spent inside. Here we allow the entity to
leave the region and return to it later; all visits count for the duration.

2. We are given a duration and want to determine the smallest square and
its placement so that the entity is inside for at least the given duration.

3. We consider problem 1, but now we are interested in contiguous presence
inside the square, so only one of the visits to the square counts.

4. We are given a duration and want to determine the smallest square and
its placement so that the entity is inside during a continuous time interval
of the given duration.

5. We do not fix duration nor square size, but optimize a relative measure
that is the ratio of the total duration and the square side length.
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6. We consider optimizing a relative measure like in problem 5, but now
for contiguous presence in the square.

Finding hotspots is useful in many applications, for example in finding the
first-passage time of an animal, segmentation, clustering, and visualization.

In animal ecology, first-passage time is defined as the time taken for an
animal to cross a circle of a given radius that is centered at some start time on
the trajectory. It can be used as a measure for search effort along a trajectory,
and a long first-passage time may indicate that there is a significant amount of
food in an area [53, 78]. First-passage time is closely related to contiguous-time
visit to a region, although the presence of food may be indicated better by total
visit time of one or more animals.

When a trajectory is segmented into semantically meaningful parts, it may be
important to use more advanced trajectory properties rather than just attributes
like speed and heading. We may want to segment the trajectory based on the
times at which it enters and leaves certain areas. These areas may be defined
by the environment (e.g. based on land cover), but they can also depend on
the trajectory itself. A straightforward example is an area in which the entity
spends most of its time. In this situation we are interested in contiguous time
within the area, so that crossing the area without halting does not lead to
unnecessary segmentation.

In some clustering applications we may be interested in certain places where
an entity spends some time, but not in the routes taken by the entity between
these places. To compute the similarity of two trajectories in this situation we
must identify these places, the hotspots, and compute the similarity based on
the sequence of hotpots visited (for example using dynamic time warping [19]).
A practical example of such a situation is in animal migration. We may find
similarity in resting places more relevant than the routes traveled between
these places.

Our methods can be used iteratively to enrich a trajectory data set with
symbols that indicate that one or more entities spend much time there. For
example, after locating a fixed-size square region where most time is spent, we
can remove all pieces of trajectories inside that square, and iterate to find the
next longest-visited square region. This is possible because our algorithms do
not require trajectories to be contiguous or complete. We can then show the
top-10 places in terms of duration of visits.

We do not assume that the hotspots are pre-defined; instead, we adopt the
more generic view that no contextual data is present. This is in contrast to
Alvares et al. [7] and Chawla and Verhein [116], who assume that a set of places
or a superimposed grid is given that pre-defines potential regions of interest.
Our work is different from research that uses the stop-and-move model [7, 97,
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107], because we do not attempt to segment a trajectory at changes in movement
type, nor do we try to semantically annotate a trajectory. Our methods allow
the time of multiple visits to be added to obtain a hotspot: three visits of an
hour can be considered more important than a single visit of two hours. Finally,
our results are also different from research on popular places [16, 113] because
the number of entities that visits the region plays no role. Benkert et al. [16] do
not incorporate the duration of visits, so the retrieved popular places could be
transit places used by many entities. Tiwari and Kaushik [113] consider only
contiguous-time visits and choose their time intervals based on the trajectory
vertices only, that is, they use the discrete trajectory model.

We solve the hotspot identification problem as an algorithmic optimization
problem and provide running-time bounds. Our results are as follows. For a
square hotspot, we can solve the contiguous-time versions in 𝑂(𝑛 log 𝑛) time,
where 𝑛 is the number of trajectory vertices. The algorithms for the total-time
versions are roughly quadratic. Finding a hotspot in which the entity spends
most time, relative to its size, takes 𝑂(𝑛3) time. Extensions to different hotspot
shapes are considered as well. We present our results for a single trajectory,
but they immediately extend to the case of multiple trajectories.

This chapter presents work that was published in:

[63] J. Gudmundsson, M. van Kreveld, and F. Staals. “Algorithms for Hotspot
Computation on Trajectory Data.” In: Proc. 21th International Conference
on Advances in Geographic Information Systems. SIGSPATIAL ’13. Orlando,
Florida: ACM, 2013, pp. 134–143

Part III: Analysis Tasks for Multiple Trajectories

Chapter 5: The Trajectory Grouping Structure

We study algorithms for computing movement patterns. In particular, given a
set of moving entities we wish to determine when and which subsets of entities
travel together. When a sufficiently large set of entities travels together for a
sufficiently long time, we call such a set a group (we give a more formal definition
later). Groups may start, end, split and merge with other groups. Apart from
the question of what the current groups are, we also want to know which splits
and merges led to the current groups, when they happened, and which groups
they involved. We wish to capture this group change information in a model
that we call the trajectory grouping structure. We define such a structure using
the Reeb graph, a concept from topology.

The informal definition above suggests that three parameters are needed to
define groups: (i) a spatial parameter for the distance between entities; (ii) a
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temporal parameter for the duration of a group; and (iii) a count for the number
of entities in a group. We will design our grouping structure definition to
incorporate these parameters so that we can study grouping at different scales.
We use the three parameters as follows: a small spatial parameter implies we
are interested only in spatially close groups, a large temporal parameter implies
we are interested only in long-lasting groups, and a large count implies we
are interested only in large groups. By adjusting the parameters suitably, we
can obtain more detailed or more generalized views of the trajectory grouping
structure.

The use of scale parameters and the fact that the grouping structure changes
at discrete events suggest the use of computational topology [47]. In particular,
we use Reeb graphs to capture the grouping structure. A Reeb graph captures
the structure of a two- or higher-dimensional scalar function, by considering the
evolution of the connected components of the level sets. Reeb graphs have been
used extensively in shape analysis and the visualization of scientific data [20,
48, 54]. The computation of Reeb graphs has received considerable attention
in computational geometry and topology; an overview is given by Dey and
Wang [39]. Recently, a deterministic 𝑂(𝑛 log 𝑛) time algorithm was presented
for constructing the Reeb graph of a 2-skeleton of size 𝑛 [103]. Edelsbrunner
et al. [48] discuss time-varying Reeb graphs for continuous space-time data.
Although we also analyze continuous space-time data, our Reeb graphs are
not time-varying, but time is the parameter that defines the Reeb graph. Ge
et al. [58] use the Reeb graph to compute a one-dimensional “skeleton” from
unorganized data. In contrast to our setting, in their applications the data
comes without a time component. They use a proximity graph on the input
points to build a simplicial complex from which they compute the Reeb graph.

Our research is motivated by and related to previous research on flocks [17,
60, 61, 117], herds [70], convoys [77], moving clusters [80], mobile groups [72,
118] and swarms [88]. These concepts differ from each other in the way in which
space and time are used to test if entities form a group: do the entities stay in a
single disc or are they density-connected [51], should they stay together during
consecutive time steps or not, can the group members change over time, etc.
Only the herds concept by Huang, Chen, and Dong [70] includes the splitting
and merging of groups. They consider the partition of the entities into clusters
for two consecutive time stamps 𝑡u� and 𝑡u�+1. For a cluster 𝐴 at time 𝑡u� and a
cluster 𝐵 at time 𝑡u�+1 they classify the relation between 𝐴 and 𝐵 based on the
number of members in 𝐴 ⧵ 𝐵, 𝐴 ∩ 𝐵, and 𝐵 ⧵ 𝐴. This classification includes join
(merge) and leave (split).

We present the first complete study of trajectory group evolution, including
combinatorial, algorithmic, and experimental results. Our research differs
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from and improves on previous research in the following ways. First, our
model is simpler than herds and thus more intuitive. Second, we consider
the grouping structure at continuous times instead of at discrete steps; all
models but the flocks were studied only for discrete time steps. Third, we
analyze the algorithmic and combinatorial aspects of groups and their changes.
Fourth, we implemented our algorithms and provide evidence that our model
captures the grouping structure well and can be computed efficiently. Fifth,
we extend the model to incorporate robustness, that is, we show how brief
interruptions of groups can be disregarded in the global structure, adding a
notion of persistence to the structure.

Furthermore, we showcase the results of experiments in videos using data
generated by the NetLogo flocking model [119, 120] and data from the Starkey
project [100]. The Starkey data describe the movement of elk, deer, and cattle.
Although there is no ground truth for the grouping structure in this data, the
experiments show that the trajectory grouping structure is plausible and has
the desired effects when changing the essential parameters.

This chapter presents work that was published in:

[28] K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, and F. Staals.
“Trajectory Grouping Structure.” In: Journal of Computational Geometry 6.1
(2015), pp. 75–98

Chapter 6: Grouping under Geodesic Distance

We significantly extend the trajectory grouping structure from the previous
chapter by incorporating contextual information. The entities generating the
trajectories typically do not move in an infinitely large unrestricted space.
Instead, they live in a world containing buildings, walls, lakes, etc., through
which they cannot move. We incorporate obstacles into the trajectory grouping
structure, and measure the distance between entities by their geodesic distance.
The geodesic distance between two entities is the distance that needs to be
traversed for one entity to reach the other entity. This approach gives a more
natural notion of groups because it separates entities moving on opposite sides
of obstacles like fences or water bodies. A threshold distance denoted by 𝜀
determines whether two entities are close enough to be in the same group.
Hence we examine the number of times that a threshold distance occurs among
𝑛 moving entities. Only threshold distances between the closest two entities of
different groups matters, so we analyze the number of events of this type for
various obstacle settings.

The combination of moving points and specific structures defined by these
points has been a topic of major interest in computational geometry; for ex-
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ample, one of the main open problems in the area is the question “How many
times can the Delaunay triangulation change its combinatorial structure in
the worst case, when 𝑛 points move along straight lines in the plane?” Other
related research on movement in geometric algorithms concerns kinetic data
structures. To our knowledge, this is the first work to combine continuously
moving points with geodesic distances in the plane. We expect that our anal-
ysis will be of interest to other distance problems on moving points than the
trajectory grouping structure, for example, in a similarity measure for two
trajectories that incorporates obstacles.

We show that the trajectory grouping structure can be computed efficiently
if obstacles are present and the distance between the entities is measured by
geodesic distance. We bound the number of critical events: times at which
the distance between two subsets of moving entities is exactly 𝜀. In case the
𝑛 entities move in a simple polygon along trajectories with 𝜏 vertices each
we give an 𝑂(𝜏𝑛2) upper bound, which is tight in the worst case. In case
of well-spaced obstacles we give an 𝑂(𝜏(𝑛2 + 𝑚𝜆4(𝑛))) upper bound, where
𝑚 is the total complexity of the obstacles, and 𝜆u�(𝑛) denotes the maximum
length of a Davenport-Schinzel sequence of 𝑛 symbols of order 𝑠. In case
of general obstacles we give an 𝑂(𝜏(𝑛2 + 𝑚2𝜆4(𝑛))) upper bound. We also
present lower bounds that show that the last two upper bounds are close to
optimal. Furthermore, for all cases we provide efficient algorithms to compute
the critical events, which in turn leads to efficient algorithms to compute the
trajectory grouping structure.

This chapter presents work that was published in:

[84] I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals.
“Trajectory Grouping Structure under Geodesic Distance.” In: Proc. 31th
annual Symposium on Computational Geometry. SoCG ’15. Eindhoven, The
Netherlands: Lipics, 2015

Chapter 7: Central Trajectories

The last task that we study is that of computing a representative trajectory for a
set of trajectories. To this end we define a central trajectory ℭ, which consists of
pieces of the input trajectories, switches from one entity to another only if they
are within a small distance of each other, and such that at any time 𝑡, the point
ℭ(𝑡) is as central as possible. We measure centrality in terms of the radius of
the smallest disk centered at ℭ(𝑡) enclosing all entities at time 𝑡, and discuss
how the techniques can be adapted to other measures of centrality.

Finding a single representative trajectory for a set of trajectories is an impor-
tant sub-task in clustering. Once a suitable clustering has been determined, the
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(a) (b)

Figure 1.5: (a) Every trajectory has a peculiarity that is not representative for the set. (b) Taking, for
example, the pointwise average of a set of trajectories may result in one that ignores context.

result needs to be stored or prepared for further processing. Storing the whole
collection of trajectories in each cluster is often not feasible, because follow-up
analysis tasks may be computation-intensive. Instead, we wish to represent
each cluster by a signature: the number of trajectories in the cluster, together
with a representative trajectory which should capture the defining features of all
trajectories in the cluster.

Representative trajectories are also useful for visualization purposes. Dis-
playing large amounts of trajectories often leads to visual clutter. Instead, if we
show only a number of representative trajectories, this reduces the visual clut-
ter, and allows for more effective data exploration. The original trajectories can
still be shown if desired, using the details-on-demand principle in information
visualization [105].

When choosing a representative trajectory for a group of similar trajectories,
the first obvious choice would be to pick one of the trajectories in the group.
However, it can be argued that no single element in a group may be a good
representative, e.g. because each individual trajectory has some prominent
feature that is not shared by the rest (see Figure 1.5(a)), or no trajectory is
sufficiently in the middle all the time. On the other hand, it is desirable to
output a trajectory that does consist of pieces of input trajectories, because
otherwise the representative trajectory may display behavior that is not present
in the input, e.g. because of contextual information that is not available to the
algorithm. Figure 1.5(b) illustrates this issue: the representative trajectory based
on the pointwise average goes through the lake, whereas all input trajectories
go around it.

To determine what a good representative trajectory of a group of similar tra-
jectories is, we identify two main categories: time-dependent and time-independent
representatives. Depending on the application, we may be interested in a rep-
resentative that includes the spatial as well as the temporal component of a
trajectory –for example, when studying a flock of animals that moved together–
or in a representative that includes only the spatial component –for example,
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when considering hikers that took the same route, but possibly at different
times and speeds.

Recall that a trajectory is a function whose image is a (piecewise linear) curve.
When we want a time-independent representative, we can select one based
directly on the geometry or topology of this set of curves [26, 67]. When we
want a time-dependent representative, we would like to have the property that
at each time 𝑡 our representative point 𝑐(𝑡) is a good representative of the set
of points 𝑃(𝑡). To this end, we may choose any static representative point of
a point set, and trace it over time. There are many choices for such a static
representative point, for example, the Fermat-Weber point (which minimizes
the sum of distances to the points in 𝑃), the center of mass (which minimizes
the sum of squared distances), or the center of the smallest enclosing circle
(which minimizes the distance to the farthest point in 𝑃).

We focus on time-dependent representatives. We measure centrality in terms
of the radius of the smallest disk centered at ℭ(𝑡) enclosing all entities at time 𝑡.
Ideally, we would output a trajectory ℭ such that at any time 𝑡, ℭ(𝑡) is the point
(entity) that is closest to its farthest entity. Unfortunately, when the entities
move in ℝu� for 𝑑 > 1, this may cause discontinuities. Such discontinuities are
unavoidable: if we insist that the output trajectory consists of pieces of input
trajectories and is continuous, then in general, there will be no opportunities
to switch from one trajectory to another, and we are effectively choosing one
of the input trajectories again. At the same time, we do not want to output
a trajectory with arbitrarily large discontinuities. An acceptable compromise
is to allow discontinuities, or jumps, but only over small distances, controlled
by a parameter 𝜀. We note that this problem of discontinuities shows up for
time-independent representatives for entities moving in ℝu�, with 𝑑 ≥ 3, as
well, because the traversed curves generally do not intersect.

Buchin et al. [26] consider the problem of computing a median trajectory
for a set of trajectories without time information. Their method produces
a trajectory that consists of pieces of the input. Agarwal et al. [1] consider
trajectories with time information and compute a representative trajectory that
follows the median (in ℝ1) or a point of high depth (in ℝ2) of the input entities.
The resulting trajectory does not necessarily stay close to the input trajectories.
They give exact and approximate algorithms. Durocher and Kirkpatrick [45]
observe that a trajectory minimizing the sum of distances to the other entities is
unstable, in the sense that arbitrarily small movement of the entities may cause
an arbitrarily large movement in the location of the representative entity. They
proceed to consider alternative measures of centrality, and define the projection
median, which they prove is stable. Basu et al. [14] extend this concept to higher
dimensions.
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We first study the problem in ℝ1, where we show that an optimal central
trajectory ℭ representing 𝑛 trajectories, each consisting of 𝜏 edges, has com-
plexity Θ(𝜏𝑛2) and can be computed in 𝑂(𝜏𝑛2 log 𝑛) time. We then consider
trajectories in ℝu� with 𝑑 ≥ 2, and show that the complexity of ℭ is at most
𝑂(𝜏𝑛5/2) and can be computed in 𝑂(𝜏𝑛3) time. Additionally, we discuss how
the techniques can be adapted to other measures of centrality.

This chapter is based on the work:

[114] M. van Kreveld, M. Löffler, and F. Staals. “Central Trajectories.” In: CoRR
abs/1501.01822 (2015)





Preliminaries

Chapter2
2.1 Parametric Search

We often deal with optimization problems of the following form. We are given a
predicate 𝒫 that is monotone in the real-valued parameter 𝑥, i.e. if 𝒫(𝑥) = True,
then 𝒫(𝑥′) = True for all 𝑥′ ≥ 𝑥, and we wish to find the smallest value of 𝑥,
say 𝑥∗, such that 𝒫(𝑥∗) = True. Megiddo’s parametric search technique is a
useful technique that can be used to solve such optimization problems [94]. As
we use it on various occasions, we describe it here.

For the technique we need a decision algorithm 𝒜 that can test predicate
𝒫. We run 𝒜 on the (unknown) optimum value 𝑥∗, while maintaining an
interval 𝐼∗ that is known to contain 𝑥∗. Initially 𝐼∗ = (−∞, ∞). Every time
the algorithm 𝒜 encounters a comparison involving 𝑥∗, we obtain an equation
𝐸(𝑥∗) involving 𝑥∗.1 We solve 𝐸(𝑥∗) = 0, giving us a constant number of roots
𝑥1, .., 𝑥u�. For each root, we run our decision algorithm 𝒜 again. This tells us the
values 𝒫(𝑥1), .., 𝒫(𝑥u�), which allows us to shrink the interval 𝐼∗ with possible
values for 𝑥∗, and get an answer for the comparison involving 𝑥∗. Thus, we
can resume running 𝒜 on 𝑥∗. Once this computation of 𝒫(𝑥∗) finishes, that
is, once we have encountered all comparisons made by algorithm 𝒜, we can
obtain 𝑥∗ from 𝐼∗ in constant time (either because 𝐼∗ contains at most one value,
the optimum, or by solving a simple equation).

If algorithm 𝒜 takes 𝑂(𝑇) time, computing 𝑥∗ takes 𝑂(𝑇2) time in total:
during the “main” evaluation of 𝒫(𝑥∗), algorithm 𝒜 encounters at most 𝑂(𝑇)
comparisons, each one yielding a constant number of roots. Hence, in total we
get 𝑂(𝑇) roots, on each of which we again run 𝒜. Since this takes 𝑂(𝑇) time
for each root, we spend 𝑂(𝑇2) time in total:

▶ Theorem 2.1 (Megiddo [94]). Given a decision algorithm 𝒜 that can compute
𝒫(𝑥), for 𝑥 ∈ ℝ, in 𝑂(𝑇) time, we can find the smallest value 𝑥∗ such that 𝒫(𝑥∗) =
True in 𝑂(𝑇2) time.

1More formally, we need that u�(u�∗) is a low-degree polynomial in u�∗.
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The running time required for this approach depends on how often we have
to call the decision algorithm 𝒜. So if running 𝒜 is very expensive, then finding
𝑥∗ this way is also very expensive. Megiddo therefore suggested the following.

We run 𝒜 once for every root 𝑥u� of an equation 𝐸(𝑥∗). If we get many of
such roots 𝑥1, .., 𝑥u� at once then we can handle this batch faster than the naive
𝑂(𝑚𝑇) time, by using linear-time median finding and binary search. That is,
we can process them in 𝑂(𝑚 + 𝑇 log 𝑚) time. To get many roots at once, we
need many independent equations, and thus independent comparisons. An
easy way to get independent comparisons is to simulate running a parallel
algorithm. That is, we replace the sequential algorithm 𝒜 that we run on 𝑥∗

by a parallel algorithm 𝒜u�. Suppose that 𝒜u� runs in 𝑂(𝑇u�) time2 using 𝑃
processors, then simulating a single (parallel) step takes 𝑂(𝑃) time, and gives
us 𝑂(𝑃) roots that we handle in 𝑂(𝑃 + 𝑇 log 𝑃) time. Thus, if 𝒜u� requires 𝑇u�
steps, the entire procedure takes 𝑂(𝑇u�𝑃 + 𝑇u�𝑇 log 𝑃) time in total.

▶ Theorem 2.2 (Megiddo [94]). Let 𝒜 be a sequential decision algorithm that can
compute 𝒫(𝑥), for 𝑥 ∈ ℝ, in 𝑂(𝑇) time, and let 𝒜u� be a parallel decision algorithm
for the same task that runs in 𝑂(𝑇u�) time using 𝑂(𝑃) processors. We can find the
smallest value 𝑥∗ such that 𝒫(𝑥∗) = True in 𝑂(𝑇u�𝑃 + 𝑇u�𝑇 log 𝑃) time.

2Since we simulate running the parallel algorithm, it suffices to analyze the running time of
u�u� in terms of the number of comparisons made. This also means that we can allow parallel
algorithms that assume shared memory and allow simultaneous writes, etc.
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Non-Monotone
Segmentation

Chapter3
In this chapter we present algorithms to segment a trajectory, that is, to

partition the trajectory into a minimum number of segments such that each
segment satisfies a given criterion [93]. A criterion is usually defined based on
an attribute of the trajectory. An attribute is a function defined on the domain
of the trajectory, for example speed, heading, or acceleration. So, a possible
segmentation criterion could be: segment the trajectory such that the minimum
and maximum speed within any segment differ by at most ℎ km/h, or by at
most a factor of two.

A criterion 𝐶 is monotone if it has the property that if 𝐶 is satisfied on some
segment 𝑆 of a trajectory, then it is also satisfied on any subsegment 𝑆′ ⊆ 𝑆.
Buchin et al. [31] provide a framework for segmenting trajectories based on
a monotone criterion or a combination of several monotone criteria. Many
criteria are monotone by nature. However, if the trajectory data is noisy, or a
type of behavior is briefly interrupted, it is desirable to weaken the monotonicity
requirement. For example, instead of requiring that the difference in speed
within a segment is at most ℎ, we could require that this is the case for at least
95% of the time within each segment. A short burst in speed does not cause
more segments in the segmentation with such a criterion. Another example is
using a threshold for the standard deviation of speed within a segment.

To segment a trajectory based on non-monotone criteria, we introduce the
notion of the start-stop diagram. This allows us to split the problem into two
subproblems: computing the start-stop diagram and computing an optimal
segmentation for a given start-stop diagram. We show that the latter problem is
NP-hard in general. However, a polynomial-time solution exists if the start-stop
diagram has certain properties. We identify these properties in Section 3.2 and
present an algorithm to compute an optimal segmentation. In Section 3.3, we
consider how combining multiple criteria affects the properties of the start-stop
diagram, and in Section 3.4 we present lower-bound constructions which show
that several of our results from Section 3.2 are tight. We briefly discuss the
segmentation problem when we consider trajectories in the discrete model
(see the discussion from Section 1.2) in Section 3.5. We consider the issue of
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computing the start-stop diagram in Section 3.6; we show how to efficiently
compute the start-stop diagram for two specific criteria. One such criterion,
the outlier-tolerant criterion, requires that the minimum and maximum values
of a piecewise-constant function 𝑓 on each segment have at most a given differ-
ence, while allowing a certain percentage of outliers. The second criterion, the
standard-deviation criterion, requires that on each segment the standard devi-
ation of 𝑓 is below a certain threshold on each segment. We show that these
criteria satisfy the properties that make the segmentation problem tractable.
In particular, a segmentation with the outlier-tolerant criterion can be com-
puted in 𝑂(𝑛2 log 𝑛 + 𝑘𝑛2) time, where 𝑛 is the number of vertices in the input
trajectory and 𝑘 is the number of segments in an optimal segmentation. A
segmentation with the standard-deviation criterion can be computed in 𝑂(𝑘𝑛2)
time.

Although our framework was designed for trajectory segmentation, our
techniques are also applicable to different problems. In particular, in Section 3.7
we discuss several variants of line simplification, and show that some of these
fit our framework.

3.1 General Approach
We study the problem of segmenting a trajectory with respect to a criterion.
Recall that a trajectory 𝒯 is a continuous piecewise-linear function from time
𝕋 = [0, 1] to ℝ2 (or ℝu�) and a sub-trajectory, also called segment, 𝒯[𝑎, 𝑏] is the
function restricted to the sub-interval [𝑎, 𝑏] ⊆ 𝕋. A criterion 𝐶 is a function
𝐶∶ 𝕋 × 𝕋 → {True, False}, which is defined on all possible segments of 𝒯. We
say an interval [𝑎, 𝑏] ⊆ 𝕋 satisfies a criterion 𝐶 if 𝐶(𝑎, 𝑏) = True; in this case
we call the segment valid. A partitioning of 𝕋 (or of 𝒯) into non-overlapping
segments whose union covers 𝕋 is called a segmentation. A segmentation of
size 𝑘 can be denoted by its segments [𝜏0, 𝜏1], [𝜏1, 𝜏2], .., [𝜏u�−1, 𝜏u�]; 𝜏0 = 0 and
𝜏u� = 1. A segmentation is valid if and only if all of its segments are valid, and
segmenting a function refers to partitioning into valid segments. We say a valid
segmentation is minimal (optimal) with respect to 𝐶 if its size is minimum; the
segmentation problem is to compute a valid minimal segmentation. We will
often omit the word “valid” because only valid segmentations are useful.

A criterion is often based on an attribute function 𝑓 ∶ 𝕋 → ℝ that has the
same domain 𝕋 as 𝒯, for example the function that maps time to the speed of
the entity at that time. A segmentation of 𝕋 based on the function 𝑓 trivially
induces a segmentation of 𝒯, therefore we may use the term “segmenting 𝑓 ” to
denote the resulting segmentation. We assume that 𝑓 is piecewise constant and
we call the points where the value of 𝑓 changes the breakpoints. The portions
between consecutive breakpoints, where 𝑓 stays constant, are called pieces.
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Figure 3.1: The start-stop diagram and a
valid segmentation into four segments.

(0, 0)

(1, 1)

start

stop

3.1.1 The start-stop diagram

To compute a minimal segmentation of 𝑓 we define the start-stop diagram. Con-
sider the parameter space of the set of sub-intervals of 𝕋. For any candidate
segment [𝑎, 𝑏], we associate the start parameter 𝑎 with the horizontal axis
and the stop parameter 𝑏 with the vertical axis in the diagram. Any point
(𝑎, 𝑏) in this diagram, with 𝑎 < 𝑏, represents a candidate segment. Thus, the
set of candidate segments is represented by the points in the upper left tri-
angle of the unit square. The set of points which represent valid segments
defines the free space in the start-stop diagram. The remaining points consti-
tute the forbidden space. A segmentation of 𝕋 into a sequence of segments
[𝜏0, 𝜏1], [𝜏1, 𝜏2], [𝜏2, 𝜏3], … , [𝜏u�−1, 𝜏u�]; 𝜏0 = 0 and 𝜏u� = 1, corresponds to a
staircase in the start-stop diagram whose convex vertices correspond to the
points (𝜏u�, 𝜏u�+1) and whose concave vertices (𝜏u�, 𝜏u�) lie on the main diagonal. A
segmentation is valid if and only if all convex vertices lie in the free space. See
Figure 3.1 for an example. Note that the start-stop diagram is reminiscent of
the free space diagram used to compute the Fréchet distance [6]. However, in
that problem one is interested in a path that stays inside the free space entirely.
The size of a staircase, that is, the number of convex vertices, corresponds to
the size of the segmentation. We will present efficient algorithms to segment a
trajectory by computing the staircase in the start-stop diagram. However, we
start with a negative result, showing that in general it is NP-hard to compute
such a staircase efficiently.

The abstract segmentation problem. We define the abstract segmentation
problem as follows. We are given a decomposition 𝐷 of the triangle spanned
by (0, 0), (0, 1) and (1, 1) into points, 𝑎-monotone bounded-degree curve seg-
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Figure 3.2: (a) Reduction from
subset sum to the abstract seg-
mentation problem. The stair-
case shows the sum u�0+u�2. (b)
The subdivision of the start-
stop diagram into cells accord-
ing to the breakpoints of u� .

ments (with horizontal axis 𝑎), and faces, each of which is marked either free or
forbidden. Let 𝑛 be the total complexity of 𝐷. In the resulting start-stop diagram,
we need to find a staircase that represents a valid, minimal segmentation. We
show that even testing the existence of a valid segmentation is NP-hard.

▶ Theorem 3.1. The abstract segmentation problem is NP-hard.

Proof. We reduce from Subset-Sum. Let 𝑎0, … , 𝑎u�−1 be a set of positive integers
and let 𝐵 be the desired subset sum. We generate an instance of the abstract
segmentation problem by constructing 𝑛 + 1 line segments in the start-stop
diagram; these line segments are precisely the free space.

Let 𝐴 = ∑u�−1
u�=0 𝑎u�, 𝐶 = 𝐴 + 1 and 𝐷 = (𝑛 + 1)𝐶 + 𝐵. We generate a start-stop

diagram of size [0, 𝐷] × [0, 𝐷], which we then scale to fit in the unit square.
One line segment 𝑠 of the free space has its endpoints at (0, 𝐶) and at (𝐷−𝐶, 𝐷)
(see Figure 3.2(a)). For each 𝑎u� we create a line segment 𝑠u� with endpoints
(𝑖𝐶, (𝑖 + 1)𝐶 + 𝑎u�) and (𝑖𝐶 + 𝐴, (𝑖 + 1)𝐶 + 𝑎u� + 𝐴). This segment lies 𝑎u� units
vertically above the first line segment 𝑠 in the start-stop diagram. The placement
of the segments is such that each staircase must choose to have its first convex
vertex on 𝑠 or 𝑠0, its second convex vertex on 𝑠 or 𝑠1, and so on. Each subsequent
step places the concave vertex 𝐶 units further along the diagonal if 𝑠 is chosen,
and 𝐶 + 𝑎u� units if 𝑠u� is chosen. Each staircase that ends at (𝐷, 𝐷) has exactly
𝑛 + 1 convex vertices, the last one necessarily on 𝑠. Furthermore, we can end
at (𝐷, 𝐷) if and only if the chosen 𝑠u� are such that the corresponding values 𝑎u�
sum up to 𝐵.

The length of the segments 𝑠u� is chosen so that we can select 𝑠u� no matter
what segments have been picked before. At the same time, the step size of at
least 𝐶 in every step makes sure that we cannot make more than one step on
the same 𝑠u�. Clearly the reduction is polynomial.
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3.2 Solving the Segmentation Problem
Even though the general segmentation problem is NP-hard, we can identify
properties of the start-stop diagram that make the problem tractable. We
assume that we are given a start-stop diagram 𝑆 (in the form specified in
Section 3.1), and a decompositon of 𝑆 into a grid of size 𝑛 × 𝑛. When 𝑓 is a
piecewise-constant function there is a natural decomposition of the start-stop
diagram into a grid by the breakpoints of 𝑓 , see Figure 3.2(b). In this case each
cell of the grid corresponds to a set of candidate segments where the end points
lie on fixed pieces of 𝑓 . The cells incident to the diagonal are triangular and
represent candidate segments with end points lying on the same piece.
Computing the reachable space. Recall that a minimal segmentation cor-
responds to a minimum-link staircase in the start-stop diagram. We define
the 𝑖-reachable space 𝑅u� as the set of points on the diagonal that can be reached
from (0, 0) by a valid staircase of size at most 𝑖. Whenever it causes no confu-
sion, we identify the diagonal of the start-stop diagram with 𝕋. In particular,
we identify the (connected components of the) reachable space 𝑅u� with a set of
intervals on 𝕋. The number of intervals is the complexity of the reachable space.
For a fixed 𝑖, the incoming 𝑖-reachable intervals of a cell 𝐶u�′u�′ are the intervals of 𝑅u�
intersected with the 𝑖′th column. We call the union of vertical (resp. horizontal)
lines intersecting an interval 𝑋 the vertical slab (resp. horizontal slab) induced
by 𝑋. Consider the valid staircases of size at most 𝑖 + 1 which have their last
convex vertex in such a vertical slab 𝑉u�. We call the connected components
of the set of points on the diagonal that can be reached by such a staircase the
outgoing (𝑖 + 1)-reachable intervals produced by 𝑋.

The following algorithm describes an iterative procedure to compute 𝑅u�, for
𝑖 = 1, 2, .., starting with 𝑅0 = {(0, 0)}. The algorithm stops when it has found
the smallest value of 𝑖 for which 𝑅u� contains point (1, 1). Let this value be 𝑘. An
actual minimum-link staircase, and hence a minimal segmentation, can then
be extracted from the sets 𝑅0, .., 𝑅u�.

Algorithm ReachableSpace(𝑆)
1. 𝑖 ← 0; 𝑅0 ← {(0, 0)}
2. while (1, 1) ∉ 𝑅u� do
3. for each interval 𝑋 in 𝑅u� do
4. Consider the intersection of the free space in 𝑆 with the vertical

slab induced by 𝑋 and project it horizontally back to the diagonal.
5. The union of 𝑅u� and these projections, over all 𝑋, forms 𝑅u�+1.
6. 𝑖 ← 𝑖 + 1
7. return 𝑅0, .., 𝑅u�
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Figure 3.3: A verticonvex cell (a) and a tunnel cell (b).

We will make this algorithm more concrete when proving Theorem 3.3. The
running time depends on the shape and the distribution of the forbidden space
in each cell. Next, we distinguish different types of cells.

We call an object verticonvex if and only if its intersection with any vertical
line ℓ is at most a single interval.1 A cell (or row) in the start-stop diagram is
verticonvex when the forbidden region within it is; see Figure 3.3(a). We call a
cell a tunnel cell if any vertical line ℓ intersects the forbidden space in that cell in
at most two intervals; see Figure 3.3(b) for an example. We will show that, for
a given 𝑛 × 𝑛 start-stop diagram, we can compute a minimal segmentation in 𝑘
segments in 𝑂(𝑘𝑛2) time if all cells are verticonvex, and in 𝑂(𝑘2𝑛2) time if each
row contains at most one tunnel cell and all other cells are verticonvex. If one
allows cells where a vertical line can intersect the forbidden space in three or
more intervals (i.e., “double-tunnels”), the problem becomes NP-hard as seen
in the construction in the proof of Theorem 3.1. Even if we have only tunnel
cells, but more than one tunnel cell in each row, the reachable space may have
exponential complexity (as we will see in Proposition 3.11).

Note that a monotone criterion yields a monotone curve in the start-stop
diagram. The region above the curve is the forbidden space, and the region
below the curve is the free space. Hence, in such a start-stop diagram all cells
are verticonvex.

3.2.1 Verticonvex cells only
Consider the algorithm ReachableSpace. The intersection of a vertical line with
the free space in a verticonvex cell consists of at most two (possibly empty)
intervals: one connected to the top, and one to the bottom of the row. The hori-
zontal projection onto the diagonal preserves this property, and the union of the

1A verticonvex region is also called “u�-monotone” in the literature (here it would be
“u�-monotone”); we choose to use the new term to avoid confusion with “monotone criteria.”



31

Figure 3.4: (a) The (u� − 1)-
reachable intervals for a
row of verticonvex cells,
and the at most two u�-reach-
able intervals. In blue the
possible positions for the u�th

vertex in the staircase. (b)
A tunnel cell may produce
more u�-reachable intervals. (a) (b)

projections of this type also consists of at most two intervals (see Figure 3.4(a)).

▶ Observation 3.2. For any 𝑖 and any row, the reachable space 𝑅u� produced by the
incoming intervals in the verticonvex cells in the row consists of at most two intervals.
One of these intervals is connected to the top of the row, and the other one is connected
to the bottom of the row.

We now prove:

▶ Theorem 3.3. Given an 𝑛 × 𝑛 start-stop diagram in which the forbidden space
in each cell is verticonvex and has constant complexity, we can compute a minimal
segmentation in 𝑂(𝑘𝑛2) time, where 𝑘 is the size of a minimal segmentation.

Proof. Assume that for the given instance of the problem a valid segmentation
exists. We specialize the procedure used in algorithm ReachableSpace. Recall
that the reachable space can be encoded as a set of intervals, each of which
corresponds to a connected component on the diagonal. Since all cells are verti-
convex, Observation 3.2 implies that the 𝑖-reachable space, for any 𝑖, consists of
𝑂(𝑛) such intervals and as such we can store it as a set of 𝑂(𝑛) values. Given
the reachable space 𝑅u� we compute the reachable space 𝑅u�+1 in a row by row
manner. By Observation 3.2, the (𝑖 + 1)-reachable space restricted to any row
consists of two intervals, one connected to the top and one to the bottom. We
“grow” these two intervals, maintaining the top endpoint of the bottom one
and the bottom endpoint of the top one while iterating over the cells in the
current row and handling the 𝑖-reachable intervals incoming to every cell. Ob-
servation 3.2 implies that there are at most two incoming 𝑖-reachable intervals
to any cell, since it is nothing more than the 𝑖-reachable space restricted to the
column that contains the cell. Furthermore, the forbidden space in each cell
has constant complexity. Therefore, we spend constant time per cell during this
process and 𝑂(𝑛2) time in total for computing 𝑅u�+1 from 𝑅u�. We perform this
step until the top-right corner (1, 1) is contained in 𝑅u�+1. Since this happens
for 𝑖 + 1 = 𝑘, this takes 𝑂(𝑘𝑛2) time. An optimal segmentation can be extracted
by standard dynamic programming methods.
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Figure 3.5: Illustration to the proof of
Lemma 3.4. The vertices of the forbid-
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3.2.2 At most one tunnel per row
Our algorithm ReachableSpace is efficient when all rows in the start-stop dia-
gram are verticonvex. If a row is not verticonvex, it may produce more than
two intervals; see Figure 3.4(b). Nonetheless, we show that if the start-stop dia-
gram is not too complex—specifically, if each row contains at most one tunnel
cell—the problem can still be solved efficiently. We start with the following
technical result.

▶ Lemma 3.4. Let 𝐶 be a tunnel cell, and let 𝐹 ⊆ 𝐶 be the forbidden space within 𝐶.
An incoming interval 𝑋 can produce at most one outgoing interval 𝐼 such that (i) 𝐼 is
neither incident to the top nor the bottom of the row; and (ii) 𝐼 does not intersect a
horizontal line through a vertex of 𝐹.

Proof. Assume, for the sake of contradiction, that 𝑋 produces two intervals
𝐼 = [𝑖1, 𝑖2] and 𝐽 = [𝑗1, 𝑗2] with this property, with 𝑖2 < 𝑗1 (see Figure 3.5). Let
𝐻u� denote the horizontal slab induced by 𝐼, define 𝐻u� similarly, and let 𝑉u�
denote the vertical slab induced by 𝑋. Since 𝐼 does not intersect a horizontal
line through a vertex of 𝐹, 𝐻u� does not contain any vertices. The same holds
for 𝐻u�.

Since 𝑋 produced the outgoing interval 𝐼, there must be at least one point 𝑝
of free space in 𝑉u� ∩ 𝐻u�. Let ℓ be the vertical line through 𝑝, and let 𝑝+ be the
first intersection of ℓ with the boundary of free space above 𝑝; 𝑝+ may coincide
with 𝑝. Notice that 𝑝+ must lie in the interior of a boundary edge 𝛾+ of free
space: 𝑝+ may not be a vertex, as there are no vertices in 𝐻u�. The edge 𝛾+ may
not cross the top boundary of 𝑉u� ∩ 𝐻u�, for otherwise 𝐼 would be larger.
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Repeating the construction for segment 𝐽, we obtain a free-space point 𝑞′ ∈
𝑉u� ∩ 𝐻u� on a different vertical line ℓ′. Arguing as above, but now working
downwards, we obtain a boundary edge 𝛾− of free space that does not cross the
bottom edge of 𝑉u� ∩ 𝐻u� . Since 𝛾− extends all the way across 𝑉u� ∩ 𝐻u� , it must
cross ℓ within that rectangle and lie below some free space point 𝑞 ∈ ℓ ∩ 𝐻u�.

We have obtained a contradiction, as now ℓ intersects 𝐹 at least three times:
once below 𝐻u� (since 𝐼 is not incident to the bottom of the row), once between
𝛾+ and 𝛾− and once above 𝐻u� (since 𝐽 is not incident to the top of the row), so
𝐶 is not a tunnel cell.

▶ Lemma 3.5. Let 𝐶 be a tunnel cell, and let 𝐹 ⊆ 𝐶 be the forbidden space within 𝐶.
Suppose 𝐶 has 𝑚 incoming 𝑖-reachable intervals and 𝑢 is the complexity of the union
of the outgoing (𝑖 + 1)-reachable intervals produced by them. Then 𝑢 ≤ 𝑐 + 𝑚 + 2,
where 𝑐 is the number of vertices of 𝐹.

Proof. We draw a horizontal line ℎu� through every vertex 𝑣 of 𝐹. Let 𝐻 denote
this set of lines. We charge every interval in the union of the outgoing intervals
that intersects such a line ℎu� to 𝑣. This way, each vertex gets charged at most
once, since two intervals that would charge the same line cannot be disjoint.
Thus, we have at most 𝑐 charges of this type.

By Lemma 3.4, each incoming interval can produce at most one outgoing
interval that does not intersect a line of 𝐻 and is incident neither to the top
nor to the bottom of the row. Therefore, we can charge those to the incoming
intervals with at most 𝑚 charges.

The remaining intervals in the union are incident either to the top or the
bottom of the row, and of those there can be at most two in total.

▶ Lemma 3.6. In an 𝑛 × 𝑛 start-stop diagram in which (i) the forbidden space in
each cell has constant complexity, (ii) each row contains at most one tunnel cell, and
(iii) the remaining cells are verticonvex, 𝑅u� consists of at most 𝑂(𝑖𝑛) intervals.

Proof. Consider the 𝑖-reachable space 𝑅u� restricted to one row of the grid. It
consists of the endpoints of all valid staircases that have their last convex vertex
in a cell of this row.

We distinguish two types of staircases: (a) those that have their last convex
vertex in a verticonvex cell and (b) those that have it in a tunnel cell. By
Observation 3.2, the 𝑖-reachable space that is formed by the staircases of type (a)
has constant complexity.

As for the staircases of type (b), they all have their last convex vertex in
the same cell since there is only one tunnel cell per row. By Lemma 3.5, and
since the forbidden space in every cell has constant complexity, the 𝑖-reachable
space formed by those staircases consists of 𝑚 + 𝑂(1) intervals, where 𝑚 is the
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complexity of the (𝑖 − 1)-reachable space 𝑅u�−1 restricted to the column that the
tunnel cell lies in.

Thus, we have the following recurrence for the complexity of the 𝑖-reachable
space restricted to one row: 𝐶(𝑖) ≤ 𝐶(𝑖 − 1) + 𝑂(1). Clearly, 𝐶(1) ≤ 3, and
therefore, we have that 𝐶(𝑖) = 𝑂(𝑖). There are 𝑛 rows, thus the total complexity
of the 𝑖-reachable space is 𝑂(𝑖𝑛).

Using essentially the same algorithm as before we now obtain:

▶ Theorem 3.7. Given an 𝑛 × 𝑛 start-stop diagram in which (i) the forbidden space
in each cell has constant complexity, (ii) each row contains at most one tunnel cell, and
(iii) the remaining cells are all verticonvex, we can compute a minimal segmentation in
𝑂(𝑘2𝑛2) time, where 𝑘 is the size of a minimal segmentation.

Proof. We again use the algorithm ReachableSpace and traverse the start-stop
diagram as described in the proof of Theorem 3.3. Since the complexity of the
forbidden space is constant in each cell, we can list a set of 𝑚 incoming intervals
and produce the at most 𝑚 + 𝑂(1) outgoing intervals in 𝑂(𝑚) time. It follows
that we can compute 𝑅u� from 𝑅u�−1 in 𝑂(𝑖𝑛2) time, and thus the total running
time is 𝑂(𝑘2𝑛2).

3.3 Combining Criteria

We can also consider segmenting a trajectory based on a combination of mul-
tiple criteria. For example, we want segments such that two criteria hold
simultaneously, or where at least one criterion holds. We can combine crite-
ria into new ones by taking conjunctions, disjunctions, and negations, and in
general we can build any boolean combination this way.

Again, we assume that there exists a grid decompositon of size 𝑛 × 𝑛 or
smaller of the start-stop diagram for each of the criteria. To obtain the start-stop
diagram for the criterion 𝐶1 ∧ 𝐶2, we simply overlay their grids and take
the union of the forbidden space 𝐹1 of 𝐶1 and the forbidden space 𝐹2 of 𝐶2.
Similarly, the forbidden space for 𝐶1 ∨ 𝐶2 is the intersection of 𝐹1 and 𝐹2.

Buchin et al. [31] observe that the conjunction or disjunction of monotone
criteria is again monotone. Similarly, we observe that the start-stop diagram
of a disjunction of two verticonvex criteria, i.e., criteria for which the start-stop
diagram contains only verticonvex cells, again contains only verticonvex cells.
Hence the disjunction of two verticonvex criteria is again a verticonvex criterion.
Since a monotone criterion is also verticonvex, the disjunction of a monotone
criterion with a verticonvex criterion results in a verticonvex criterion as well.
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Figure 3.6: The start-stop diagram for the conjunc-
tion of a monotone and a verticonvex criterion.
The forbidden space resulting from the mono-
tone criterion is shown in gray. We further subdi-
vide the start-stop diagram (dashed lines) such
that the boundary of this region u� intersects at
most one cell in row and in any column.

γ

For the conjunction of two verticonvex criteria we take the union of their for-
bidden spaces. Unfortunately, this can lead to non-verticonvex cells. However,
we can show that if one of the criteria is monotone, we can slightly modify
the grid of the combined start-stop diagram such that it contains at most one
tunnel cell in each row and the remaining cells are verticonvex. By Theorem 3.7
we can therefore still compute a minimal segmentation efficiently.

▶ Proposition 3.8. Let 𝐶1 be a monotone criterion, let 𝐶2 be a verticonvex criterion,
and let the overlay of their grids have size 𝑛 × 𝑛. If the complexity of the forbidden space
in every cell is constant, then we can compute a minimal segmentation with respect to
the criterion 𝐶1 ∧ 𝐶2 in 𝑂(𝑘2𝑛2) time, where 𝑘 is the size of a minimal segmentation.

Proof. We argue that there exists an 𝑂(𝑛) × 𝑂(𝑛) refinement of the overlay of
the two grids such that (i) every row contains at most one tunnel cell, and (ii) the
remaining cells are verticonvex. The claim then follows from Theorem 3.7.

Recall that a monotone criterion corresponds to an 𝑎𝑏-monotone curve 𝛾
in the start-stop diagram (with axes 𝑎 and 𝑏), in which all points above the
curve form the forbidden space, and all points below the curve lie in the free
space. We subdivide the grid such that 𝛾 intersects at most one cell in any row,
and at most one cell in any column (see Figure 3.6). Since 𝛾 is 𝑎𝑏-monotone it
intersects an original grid line at most once; this means we add at most 𝑂(𝑛)
grid lines. The complexity of the forbidden space in each cell is constant.

Clearly, the cells of the refined grid that are not intersected by 𝛾 are verticon-
vex: everything above 𝛾 is forbidden space, and the forbidden space in other
cells originates only from a verticonvex criterion. The cells that are intersected
by 𝛾 are (at worst) tunnel cells since every vertical line intersects the forbidden
space at most twice: at most once for the forbidden space resulting from the
verticonvex criterion, and at most once for the forbidden space above 𝛾. Thus,
we have at most one tunnel cell per row.
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Note that essentially the same approach can also be used to solve the problem
for the conjunction of a verticonvex criterion and the negation of a monotone
criterion:

▶ Corollary 3.9. Let 𝐶1 be a monotone criterion, let 𝐶2 be a verticonvex criterion,
and let the overlay of their grids have size 𝑛 × 𝑛. If the complexity of the forbidden
space in every cell is constant, then we can compute a minimal segmentation with
respect to the criterion ¬𝐶1 ∧ 𝐶2 in 𝑂(𝑘2𝑛2) time, where 𝑘 is the size of a minimal
segmentation.

3.4 Lower bounds
In this section we present lower bounds on the complexity of the reachable
space for several types of start-stop diagrams. In particular, we show that the
𝑘-reachable space in a start-stop diagram representing the conjunction of a
monotone and a verticonvex criterion may have complexity Ω(𝑘𝑛), and that
if we have more than one tunnel cell per row then the 𝑘-reachable space may
have exponential complexity.

Gadgets. We construct the start-stop diagrams by gluing together individual
cells. Given a start-stop diagram, let 𝐶u�u� be the cell in column 𝑖 and row 𝑗. We
identify 𝐶u�u� with the unit square [0, 1] × [0, 1], which allows us to describe 𝐶u�u�
using a combination of gadget cells, or gadgets for short. A gadget acts as a
function, mapping reachable points in the incoming intervals of the cell to the
reachable points in the outgoing intervals. It will, however, be more convenient
to model each gadget 𝛼 as a function 𝑓u� mapping incoming points 𝑥 ∈ [0, 1] to
a set of points 𝑓u�(𝑥) ⊆ [0, 1]. This set 𝑓u�(𝑥) corresponds to the free space within
the cell on the vertical line at 𝑥.

We write [𝑥] for the interval (set) consisting of just 𝑥 and 𝑓 (𝑋) for the image
of a subset 𝑋 ⊆ [0, 1] under 𝑓 . The gadgets that we use are then 𝑓∅(𝑥) = ∅, to
model cells that are completely forbidden, and the gadgets shown in Figure 3.7.
Note that gadgets (a), (b) and (c) are tunnel cells, while gadgets (d) and (e) are
verticonvex cells.

When combining cells 𝐶u�u� and 𝐶(u�+1)u� into the final start-stop diagram, we use
the description of 𝐶(u�+1)u� for their shared border. Similarly, we give preference
to 𝐶u�(u�+1) over 𝐶u�u� for their shared border. Furthermore, let 𝑓u�u� be the function
describing 𝐶u�u�. For row 𝑗, we then define

𝑅u�
u� =

u�−1
⋃
u�=1

𝑓u�u� (𝑅u�
u�−1) and 𝑅u�

1 = 𝑓0u�(0). (3.1)



37

(a) fa(x) = [x] (b) fb(x) =
[

x+1
2

]
(c) fc(x) =

[ x
2
]

(d) fd(x) = [0] (e) fe(x) = [1]

Figure 3.7: The gadget cells used in the lower bound constructions.

The set 𝑅u�
u� denotes the 𝑘-reachable space restricted to the 𝑗th row (expressed

in the coordinates of the row). We can obtain the reachable space 𝑅u�, by
reparameterizing each 𝑅u�

u� and taking the union over all 𝑗.
In all our constructions the triangular cells incident to the diagonal are

completely forbidden. So a staircase ending in the 𝑗th row can have at most 𝑗−1
steps. Thus, 𝑅u�

u� = 𝑅u�
u�−1 for 𝑘 ≥ 𝑗. (Recall that the 𝑘-reachable space corresponds

to the valid staircases with at most 𝑘 steps.)

At most one tunnel per row. The running time in Proposition 3.8 (and
Theorem 3.7) is a factor 𝑘 worse than that in Theorem 3.3. We now give an
example of an 𝑛 × 𝑛 start-stop diagram resulting from the conjunction of a
monotone and a verticonvex criterion in which the complexity of the 𝑘-reachable
space is Ω(𝑘𝑛). In this start-stop diagram, every cell has constant complexity,
every row contains at most one tunnel cell and all the remaining cells are
verticonvex. Thus, the lower bound of Proposition 3.10 below matches the
worst-case upper bound we give in Lemma 3.6. This explains the extra factor 𝑘
in the running time of our algorithm.

▶ Proposition 3.10. There exists an 𝑛 × 𝑛 start-stop diagram such that (i) the
forbidden space is the union of the region above a monotone curve and one verticonvex
region per cell, (ii) the forbidden space in each cell is polygonal and has constant
complexity, and (iii) the complexity of the 𝑘-reachable space is Ω(𝑛2), where 𝑘 is the
size of an optimal segmentation.

Proof. We construct a start-stop diagram cell by cell using the gadgets de-
scribed above. On the basis of the description of the reachable space in Equa-
tion (3.1), we construct the start-stop diagram such that the reachable space
satisfies the following recurrence:

𝑅u�
u� = 𝑓u� (𝑅u�−1

u�−1) ∪ 𝑓u� (𝑅u�−1
u�−1) and 𝑅2

1 = [0] ∪ [
1
2

] . (3.2)
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Figure 3.8: A start-stop diagram of the conjunc-
tion of a monotone criterion and a verticonvex
one that results in a reachable space of complex-
ity Ω(u�2).

To accomplish this, we place the gadgets as follows. For cells 𝐶u�u�, with 𝑗 = 𝑖+1
and 𝑗 < 𝑛, we use an overlay of gadgets (b) and (d) from Figure 3.7. For 𝑗 = 𝑛
and 𝑖 = 𝑛 − 1, we use gadget (e). All other cells are forbidden. The overall
diagram is shown in Figure 3.8. It can be seen as a conjunction of a monotone
criterion and a verticonvex one.

It is easy to prove by induction that the following holds for 𝑗 ∈ 2, … , 𝑛 − 1:

𝑅u�
u�−1 = [0] ∪

u�−1
⋃
u�=1

[
2u� − 1

2u� ] . (3.3)

In our construction, the minimum size of an optimal segmentation is at least
𝑛 − 2. This follows from the fact that the cells 𝐶u�u� with 𝑗 ≥ 𝑖 + 2 are completely
forbidden. Furthermore, by Equation (3.3), for any 𝑗, all intervals in 𝑅u�

u�−1 are
pairwise disjoint. Note that also across the rows, the intervals are disjoint.
Therefore, the total number of these intervals over all rows is a lower bound
on the complexity of the 𝑘-reachable space, where 𝑘 is the size of an optimal
segmentation. Thus,

u�−1
∑
u�=1

∣𝑅u�
u�∣ ≥

u�−1
∑
u�=2

∣𝑅u�
u�−1∣ =

u�−1
∑
u�=2

𝑗 = Ω(𝑛2),

where |⋅| denotes the description complexity2 of the set. This completes the
proof.

2Our sets are finite unions of intervals. By the description complexity of a set we mean the minimum
number of intervals required to write the set as a union.
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More than one tunnel per row. Next, we show that if we allow two tunnel
cells per row, then the reachable space can have exponential complexity. The
idea of the construction is the following. We use a block of three gadgets (a), (b)
and (c) from Figure 3.7. We arrange the three gadgets so that the complexity of
the reachable space is doubled every two rows. The construction is illustrated
in Figure 3.9. Indeed, the tunnel in gadget (a) exactly copies the reachable space
in column 𝑖 to column 𝑖 + 1, and the tunnels in gadgets (b) and (c) “compress”
both copies of the reachable intervals and project them onto column 𝑖 +2. Since
the reachable space in the first column consists of exactly one point this leads
to a reachable space in the last column that consists of an exponential number
of isolated points.3

▶ Proposition 3.11. There exists an 𝑛 × 𝑛 start-stop diagram such that (i) the
forbidden space in each cell has constant complexity, (ii) each row contains at most two
tunnel cells, (iii) the remaining cells are all verticonvex, and (iv) the complexity of the
𝑘-reachable space 𝑅u� is Ω(2u�/4), where 𝑘 is the size of an optimal segmentation.

Proof. We again use the gadgets from Figure 3.7. For cell 𝐶12 we use gadget (d),
for 𝐶(u�−1)u� we use gadget (e). For the cells 𝐶u�(u�+1) we use gadget (a) when 𝑖 is
even, and gadget (c) when 𝑖 is odd. For 𝐶u�(u�+2) we use gadget (b). All remaining
cells are forbidden. The overall construction is shown in Figure 3.9. We express
the reachable space in the form of Equation (3.1).

𝑅u�
u� = 𝑓u� (𝑅u�−1

u�−1) ∪ 𝑓u� (𝑅u�−2
u�−1) (3.4)

= 𝑓u� (𝑓u� (𝑅u�−2
u�−2)) ∪ 𝑓u� (𝑅u�−2

u�−1) and 𝑅2
2 = 𝑅2

1 = [0].

We claim that the following holds for even 𝑗 larger than 2:

𝑅u�
u�−1 =

2u�/2−1−1
⋃
u�=0

[
𝑖

2u�/2−1 ] . (3.5)

We prove this by induction. For 𝑗 = 2 this is clearly true. For 𝑗 → 𝑗 + 2, using
Equation (3.4) we obtain

𝑅u�+2
u�+1 = 𝑓u� (𝑅u�

u�−1) ∪ 𝑓u� (𝑅u�
u�) .

3It may appear that in this construction one could simply refine the grid by adding a horizontal
grid line through the center of every row and obtain a start-stop diagram where every row
has at most one tunnel. This would seem to contradict Lemma 3.6, which states that in such a
start-stop diagram the u�-reachable space has complexity u�(u�u�). However, since the grid has to
be symmetric, we also have to add a vertical line through the point where the new horizontal
line crosses the main diagonal. It so happens that the resulting vertical line again cuts a tunnel
cell into two, resulting in two tunnel cells per row. Incrementally adding lines in this manner
until there is at most one tunnel in every row leads to a grid of exponential size.
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Figure 3.9: A start-stop diagram
with at most two tunnels per row
that results in a reachable space
of exponential complexity.

By the induction hypothesis for 𝑅u�
u�−1 and since 𝑅u�

u� = 𝑅u�
u�−1:

𝑅u�+2
u�+1 =

2u�/2−1−1
⋃
u�=0

[
𝑖

2u�/2 ] ∪
2u�/2−1−1

⋃
u�=0

[
𝑖

2u�/2 +
1
2

]

=
2u�/2−1−1

⋃
u�=0

[
𝑖

2u�/2 ] ∪
2u�/2−1

⋃
u�=2u�/2−1

[
𝑙 − 2u�/2−1 + 2u�/2−1

2u�/2 ]

=
2u�/2−1

⋃
u�=0

[
𝑖

2u�/2 ] .

This proves Equation (3.5) for even 𝑗. Since the intervals generated by this
sequence are pairwise disjoint, the complexity of 𝑅u�

u�−1 is at least 2u�/2. A valid
segmentation has to have at least ⌊𝑛/2⌋ steps, since all cells 𝐶u�u� with 𝑗 ≥ 𝑖 +3 are
completely forbidden. Thus, the complexity of the 𝑘-reachable space, where 𝑘
is the size of the optimal segmentation, is lower bounded by the complexity of
𝑅⌊u�/2⌋

⌊u�/2⌋−1. Therefore, the complexity is at least Ω(2u�/4).

Incremental Reachability. One might argue that to solve the segmentation
problem, we only need to maintain the incremental reachable space, i.e., the
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Figure 3.10: A start-stop diagram of the conjunction of a monotone criterion and a verticonvex one
that results in a high complexity incremental reachable space.

subset of the diagonal 𝑅u�⧵𝑅u�−1 reachable with exactly 𝑖 steps. Next we show that
this set can also have high complexity. To this end we extend the construction
given in Proposition 3.10.

▶ Observation 3.12. There exists an 𝑛 × 𝑛 start-stop diagram such that (i) the
forbidden space is the union of the region above a monotone curve and one verticonvex
region per cell, (ii) the forbidden space in each cell is polygonal and has constant
complexity, and (iii) the complexity of 𝑅u� ⧵ 𝑅u�−1 is Ω(𝑖2) for 𝑖 ∈ 2, … , ⌊𝑛/2⌋.

Proof. In this construction we use the gadgets from Figure 3.7, as well as
an additional (type of) gadget similar to gadget (d). This new gadget 𝑔u� =
[𝑥u�] = [2𝑖/𝑛], for 𝑖 ∈ 1, … , ⌊𝑛/2⌋, is essentially a constant function with value
𝑥u�. Assume for simplicity of presentation that 𝑛 is odd and let 𝑚 = ⌈𝑛/2⌉ be
the index of the middle row. We place the cell with gadget function 𝑔u� in the
𝑖th column and 𝑚th row. Furthermore, there are gadgets of type (d) in the
𝑖th column of row 𝑖 + 1 for 𝑖 ∈ 0, … , 𝑚 − 1. The diagram for columns 𝑖 ≥ 𝑚
is a copy of the construction used in Proposition 3.10, which we modify as
follows (see Figure 3.10). Instead of using an overlay of gadget (b) and (d),
we overlay gadget (b) with a modification of gadget (c), which maps 𝑥 to an
interval instead of a single value. The gadget function is given by

𝑓u� (𝑥) = [0,
𝑥
2

] .
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For the reachable space in the 𝑚th row, we have

𝑅u�
u� =

u�
⋃
u�=1

[𝑥u�] .

For the upper part of the diagram (i.e., columns with index greater than 𝑚)
we have a recurrence similar to that of Equation (3.2):

𝑅u�+u�
u� = 𝑓u� (𝑅u�+u�−1

u�−1 ) ∪ 𝑓u� (𝑅u�+u�−1
u�−1 ) .

It is easy to prove by induction on 𝑞 that the following holds:

𝑅u�+u�
u�+u� =

u�−1
⋃
u�=0

[1 −
1
2u� , 1 −

1
2u�+1 −

1 − 𝑥u�
2u� ] ∪

u�
⋃
u�=1

[1 −
1 − 𝑥u�

2u� ] ,

for 𝑖 ∈ 1, … , ⌊u�
2

⌋ and 𝑚 + 𝑞 < 𝑛.
Now we are interested in the incremental reachable space, which can be

written as follows:

𝑅u�+u�
u�+u� ⧵𝑅u�+u�

(u�−1)+u� =
u�−1
⋃
u�=0

[1 −
1

2u�+1 −
1 − 𝑥u�−1

2u� , 1 −
1

2u�+1 −
1 − 𝑥u�

2u� ]∪[1 −
1 − 𝑥u�

2u� ] .

Since the intervals in the above equation are pairwise disjoint (since 𝑥u� ∈ (0, 1)
for all 𝑖), we have that

∣𝑅u�+u�
u�+u� ⧵ 𝑅u�+u�

(u�−1)+u�∣ = 𝑞 + 1,

where |⋅| denotes the description complexity of the set. Therefore we can write

u�+u�−1
∑
u�=1

∣𝑅u�
u� ⧵ 𝑅u�

u�−1∣ ≥
u�+u�−1

∑
u�=u�

∣𝑅u�
u� ⧵ 𝑅u�

u�−1∣ =
u�−1
∑
u�=0

∣𝑅u�+u�
u� ⧵ 𝑅u�+u�

u�−1 ∣ =
u�−1
∑
u�=0

(𝑞+1) = 𝑂(𝑘2),

using 𝑘 = 𝑖 + 𝑞 for 𝑖 ∈ 1, … , ⌊u�
2

⌋. This completes the proof.

3.5 Non-Monotone Segmentation in the Discrete
Trajectory Model

In this section we consider the segmentation problem for trajectories in the
discrete model (see Section 1.2). The approach in which we compute a start-stop
diagram and segment the trajectory based on the start-stop diagram works also
in this case, and can even be simplified slightly.
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We again segment the trajectory based on an attribute function 𝑓 . Now
𝑓 ∶ 𝑈 → ℝ is a discrete function defined on the index set 𝑈 = {1, .., 𝑛}. A
segmentation is a partition of 𝑈 into disjoint (contiguous) subsequences, or
discrete segments. Our task is now to compute a discrete segmentation: a segmen-
tation into a minimum number of valid discrete segments. We will address
the weighted version of the problem in which we assume that 𝑓 is given as a
sequence 𝑆 = 𝑠1, .., 𝑠u� of pairs 𝑠u� = (𝑣u�, 𝑤u�), where 𝑣u� is the value of piece 𝑖
and 𝑤u� is its weight. The weights can be used to represent pieces of different
lengths.

Analogous to the start-stop diagram, we consider the start-stop matrix, a
simplification of the start-stop diagram that is an 𝑛 × 𝑛 matrix 𝐵 with boolean
values, where the entry 𝐵(𝑖, 𝑗) at the 𝑖th column and 𝑗th row from below corre-
sponds to the value of the criterion function at (𝑖, 𝑗).4 It is then relatively easy
to compute a minimal segmentation by using dynamic programming, since we
can use 𝐵(⋅, ⋅) as the adjacency matrix of an unweighted directed acyclic graph.
A minimal segmentation corresponds precisely to a shortest path from 1 to 𝑛
and can be found in 𝑂(𝑛2) time [36].

▶ Proposition 3.13. Given an 𝑛 × 𝑛 start-stop matrix, one can check if a discrete
segmentation exists, and if so compute it, in 𝑂(𝑛2) time and space.

3.6 Computing the Start-stop Diagram

So far we focused on computing a minimal segmentation for a given start-stop
diagram. We now discuss two specific criteria, prove that they are verticonvex,
and explain how to construct the corresponding start-stop diagram efficiently.
The criteria considered are the outlier-tolerant criterion and the standard-
deviation criterion on a piecewise-constant function 𝑓 . We also show that if
𝑓 is piecewise linear then the start-stop diagram may contain more than one
tunnel cell per row.

3.6.1 Segmentation on the Outlier-Tolerant Criterion
For a given piecewise-constant function 𝑓 , we can segment 𝑓 such that in each
valid segment [𝑎, 𝑏] the minimum and maximum values differ by at most ℎ.
To accomodate outliers we require that only a fraction 𝜌, for a given constant
0 ≤ 𝜌 ≤ 1, of a valid segment [𝑎, 𝑏] must have its values within a range of

4Usually a matrix is indexed by row first and column second. We switch the indices to be consistent
with the continuous case, and because it feels more natural in light of the application.
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χ<
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χ≤
ij

Figure 3.11: Obtaining the function u�u�u�
from u�≤

u�u� and u�<
u�u� shifted by ℎ to the left

(dashed).

extent ℎ, and a fraction 1 − 𝜌 of [𝑎, 𝑏] may have any value.5 We present an
efficient algorithm for computing the start-stop diagram, and further show that
the forbidden space within each cell of the start-stop diagram is verticonvex.
To simplify the presentation, we first present an algorithm to compute the
start-stop matrix. That is, we consider discrete segmentation. We then extend
this algorithm to compute the start-stop diagram.

Discrete Segmentation

We consider 𝑓 as a sequence 𝑠1 = (𝑣1, 𝑤1), … , 𝑠u� = (𝑣u�, 𝑤u�) of (value, weight)
pairs. We first give a formal definition of the criterion and investigate its
structure. Let 𝑆u�u� be the contiguous subsequence 𝑠u�, … , 𝑠u� and let 𝜆u�u� be the
total weight of its elements. Let 𝑆≤

u�u� (𝑥) = {𝑠u� ∈ 𝑆u�u� ∣ 𝑣u� ≤ 𝑥} denote the set of
elements in 𝑆u�u� with value at most 𝑥, and let 𝜒≤

u�u� (𝑥) = ∑u�u�∈u�≤
u�u�(u�) 𝑤u� be the total

weight of these elements. We define 𝑆<
u�u� (𝑥) and 𝜒<

u�u� (𝑥) analogously. The total
weight of the elements in 𝑆u�u� with a value in the range [𝑥, 𝑥 + ℎ] is then

𝜓u�u�(𝑥) = 𝜒≤
u�u� (𝑥 + ℎ) − 𝜒<

u�u� (𝑥).

Our goal is to segment 𝑓 so that, for each segment 𝑆u�u�, we have maxu� 𝜓u�u�(𝑥)/𝜆u�u� ≥
𝜌. Let 𝐵 be the start-stop matrix. To test the value 𝐵u�u�, we could compute
an explicit representation of 𝜒≤

u�u� and an explicit representation of 𝜒<
u�u� shifted

by ℎ to the left, and then take their difference (see Figure 3.11). This takes
𝑂((𝑗 − 𝑖) log(𝑗 − 𝑖)) time, since we have to sort the values by weight. There
are 𝑂(𝑛2) cells, so the total amount of time required to compute the start-stop
matrix is 𝑂(𝑛3 log 𝑛).

It is however not necessary to recompute the functions from scratch for each
cell. Increasing 𝑗 by one corresponds to raising the functions 𝜒≤

u�u� and 𝜒<
u�u� by

5Using the same algorithm we can also handle the following similar criterion by using the
logarithm of the function. For a given piecewise-constant positive function u� and a ratio ℎ, we
can segment u� so that in each valid segment [u�, u�] there is a portion u� of total length at least
u�(u� − u�) such that u�max/u�min ≤ ℎ, where u�min and u�max are the minimum and maximum
function values that occur in u�.
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𝑤u�+1 for all values 𝑥 ≥ 𝑣u�+1. Therefore we have:

𝜓u�(u�+1)(𝑥) =
⎧{
⎨{⎩

𝜓u�u�(𝑥) + 𝑤u�+1 if 𝑥 ∈ [𝑣u�+1 − ℎ, 𝑣u�+1], and
𝜓u�u�(𝑥) otherwise.

(3.6)

We now store 𝜓u�u� as a data structure that allows us to query the maximum of
𝜓u�u� on any given interval, and can be updated efficiently to represent 𝜓u�(u�+1).
The data structure we use is an augmented segment tree that supports both
operations in 𝑂(log 𝑛) time.6

A data structure to compute the start-stop matrix. We associate each piece
𝑠u� = (𝑣u�, 𝑤u�) of 𝑓 with an interval 𝐼u� = [𝑣u�−ℎ, 𝑣u�] of weight 𝑤u�. By Equation (3.6) it
now follows that the value of 𝜓u�u�(𝑥) is equal to the total weight of the intervals
from 𝐼1, … , 𝐼u� that contain 𝑥. Hence, we can represent 𝜓u�u� using the set of
intervals 𝐼1, … , 𝐼u�. We now describe an augmented segment tree 𝑇 that stores
these weighted intervals.

Let 𝑢1, … , 𝑢u� be the endpoints of all intervals in 𝐼1, … , 𝐼u� in sorted order.
Internally, a segment tree 𝑇 stores the elementary intervals [𝑢u�, 𝑢u�+1] in this
order in the leaves of a balanced binary tree [37]. The internal nodes store
values that allow searching on 𝑢-value. Since we know the endpoints of the
intervals of 𝜓u�u� for all 𝑖 and 𝑗 in advance, we can initialize 𝑇 with the set of 𝑂(𝑛)
endpoints and all weights set to zero. Therefore, no rebalancing has to be done
when adding or removing an interval stored in the tree; only the values stored
in the nodes which relate to weights will change.

Each node 𝜈 in a segment tree has an associated range 𝑟u�, and an associated
set ℐu� of intervals. The range 𝑟u� is the union of the elementary intervals stored
in (the leaves of) the subtree rooted at 𝜈, and ℐu� is a subset of intervals stored
in the tree. An interval 𝐼 occurs in ℐu� if and only if 𝐼 contains 𝑟u� but not the
range of 𝜈’s parent node [37]. We now augment 𝑇 such that each node 𝜈 stores
the total weight 𝐴u� of the intervals associated with 𝜈.

So for a tree 𝑇 representing the function 𝜓u�u� we can obtain the value of 𝜓u�u� at
𝑥 by searching for the elementary interval containing 𝑥 and summing over the
𝐴-values on the search path.

A second augmentation provides us with a way to determine the maximum
of 𝜓u�u� in a given interval in 𝑂(log 𝑛) time. This is done by storing a value 𝐵u� at
every node 𝜈 that is the maximum sum of all 𝐴-values on a path from 𝜈 to a
leaf in the subtree rooted at 𝜈.

6The “segments” stored in this standard data structure as described in [37] are not to be confused
with the segments of the segmentation of a trajectory.
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When querying 𝑇 for the maximum of the function 𝜓u�u� on a given interval
[𝑎, 𝑏], we walk along the two paths from the root to the elementary intervals
containing 𝑎 and 𝑏 and maintain the maximum of the 𝐵-values stored in the
roots of the subtrees between the two paths. This takes time linear in the
number of nodes visited, hence we can find the maximum of 𝜓u�u� on [𝑎, 𝑏] in
𝑂(log 𝑛) time.

When inserting an interval 𝐼u� = [𝑣u� − ℎ, 𝑣u�] with weight 𝑤u�, updating 𝐴- and
𝐵-values can be done in 𝑂(log 𝑛) time. The 𝐴-value needs to be increased by 𝑤u�
in the 𝑂(log 𝑛) nodes 𝜈 for which 𝐼u� ∈ ℐu�. This operation is standard. The
𝐵-values have to be updated only in the nodes along the path from the root to
the nodes where the 𝐴-values have been modified. Since those nodes lie along
the two paths from the root to the elementary intervals storing 𝑣u� − ℎ and 𝑣u�,
this can be done in 𝑂(log 𝑛) time overall.

▶ Lemma 3.14. The start-stop matrix can be computed in 𝑂(𝑛2 log 𝑛) time.

Proof. We fill in the matrix 𝐵 by testing the validity of subsequences of 𝑆. A
single column of 𝐵 corresponds to testing the validity of 𝑆u�u�, 𝑆u�(u�+1), … , 𝑆u�u�. This
can be done in the given order (bottom-up in a column) in 𝑂(𝑛 log 𝑛) time by
using the data structure described above.

Assume that we have a tree 𝑇 representing 𝜓u�u� and that we have determined
whether 𝑆u�u� is valid. Then we insert 𝐼u�+1 with weight 𝑤u�+1 in the augmented tree,
and perform a query to determine maxu� 𝜓u�(u�+1)(𝑥). We also compute 𝜆u�(u�+1)
from 𝜆u�u� by adding 𝑤u�+1. Now the test maxu� 𝜓u�(u�+1)(𝑥)/𝜆u�(u�+1) ≥ 𝜌 determines
whether or not 𝑆u�(u�+1) is valid.

Using the algorithm from Proposition 3.13 we can then conclude:

▶ Proposition 3.15. Given a piecewise-constant function 𝑓 with 𝑛 breakpoints, a
threshold value ℎ > 0, and a ratio 𝜌 ∈ [0, 1], we can compute a discrete segmentation
for the condition that, on a fraction of length at least 𝜌 of a segment, the difference
between the maximum and minimum function value is at most ℎ, in 𝑂(𝑛2 log 𝑛) time.

Continuous Segmentation

For continuous segmentation, we are allowed to cut 𝑓 at any two points 𝑎, 𝑏 ∈
[0, 1]. So we need to determine the forbidden space in the start-stop diagram.
The breakpoints of the function 𝑓 decompose the start-stop diagram into a grid.
We now prove that the forbidden space within a cell 𝐶 = [𝑎, 𝑎] × [𝑏, 𝑏] of this
grid can be described by four linear inequalities of the following form, where
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𝜓∗
1, … , 𝜓∗

4 are constant values specific to the cell:

(𝑏 − 𝑎)𝜌 >

⎧{{{{
⎨{{{{⎩

𝜓∗
1 + (𝑎 − 𝑎) + (𝑏 − 𝑏)

𝜓∗
2 + (𝑎 − 𝑎)

𝜓∗
3 + (𝑏 − 𝑏)

𝜓∗
4

(3.7)

▶ Lemma 3.16. For any cell 𝐶 = [𝑎, 𝑎] × [𝑏, 𝑏] of the start-stop diagram, there
exist values of 𝜓∗

1, … , 𝜓∗
4, such that the forbidden space in 𝐶 is the intersection of four

halfplanes within the cell, described by the inequalities in Equation (3.7).

Proof. We use an approach similar to that used in the previous section. Let

𝜒≤(𝑥, 𝑎, 𝑏) = ∣{𝑡 ∣ 𝑡 ∈ [𝑎, 𝑏] ∧ 𝑓 (𝑡) ≤ 𝑥}∣

denote the length of the portion of [𝑎, 𝑏] on which the value of 𝑓 is at most 𝑥,
let 𝜒< be defined analogously, and let

𝜓(𝑥, 𝑎, 𝑏) = 𝜒≤(𝑥 + ℎ, 𝑎, 𝑏) − 𝜒<(𝑥, 𝑎, 𝑏). (3.8)

For any point (𝑎, 𝑏) ∈ [𝑎, 𝑎] × [𝑏, 𝑏], the corresponding segment [𝑎, 𝑏] is
invalid if and only if maxu� 𝜓(𝑥, 𝑎, 𝑏) < (𝑏 − 𝑎)𝜌, i.e., for all possible intervals
𝐼 = [𝑥, 𝑥+ℎ], the fraction of [𝑎, 𝑏] on which the function value lies in 𝐼 is smaller
than 𝜌.

Note that the candidate segment corresponding to (𝑎, 𝑏) contains the segment
defined by (𝑎, 𝑏). Let 𝜓u� be the function 𝜓 restricted to the cell 𝐶. We can
rewrite 𝜓u� with respect to 𝜓(𝑥, 𝑎, 𝑏) as follows. Within the cell, decreasing 𝑎 by
some value Δu� corresponds to raising the function 𝜒≤ by Δu� for all input values
which are greater than or equal to 𝑓 (𝑎); the function 𝜒< is affected in a similar
manner. By the definition of 𝜓 in Equation (3.8) above, this implies that 𝜓u�
increases by Δu� only on the interval 𝐼u� = [𝑓 (𝑎) − ℎ, 𝑓 (𝑎)]. Similarly, increasing 𝑏
by Δu� results in increasing 𝜓u� by Δu� on 𝐼u� = [𝑓 (𝑏) − ℎ, 𝑓 (𝑏)]. Letting Δu� = 𝑎 − 𝑎
and Δu� = 𝑏 − 𝑏, we can rewrite 𝜓u� as follows:

𝜓u�(𝑥, 𝑎, 𝑏) =

⎧{{{{
⎨{{{{⎩

𝜓(𝑥, 𝑎, 𝑏) + Δu� + Δu� if 𝑥 ∈ 𝐼u� ∩ 𝐼u�,
𝜓(𝑥, 𝑎, 𝑏) + Δu� if 𝑥 ∈ 𝐼u� ⧵ 𝐼u�,
𝜓(𝑥, 𝑎, 𝑏) + Δu� if 𝑥 ∈ 𝐼u� ⧵ 𝐼u�,
𝜓(𝑥, 𝑎, 𝑏) otherwise.

(3.9)
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Therefore

max
u�

𝜓u�(𝑥, 𝑎, 𝑏) = max

⎧{{{{
⎨{{{{⎩

maxu�∈u�u�∩u�u�
𝜓(𝑥, 𝑎, 𝑏) + 𝑎 − 𝑎 + 𝑏 − 𝑏

maxu�∈u�u�⧵u�u�
𝜓(𝑥, 𝑎, 𝑏) + 𝑎 − 𝑎

maxu�∈u�u�⧵u�u�
𝜓(𝑥, 𝑎, 𝑏) + 𝑏 − 𝑏

maxu�∉(u�u�∪u�u�) 𝜓(𝑥, 𝑎, 𝑏),

(3.10)

so the condition maxu� 𝜓(𝑥, 𝑎, 𝑏) < (𝑏 − 𝑎)𝜌 is equivalent to the conjunction of
four linear inequalities in 𝑎 and 𝑏; hence the forbidden space within 𝐶 is the
intersection of the resulting four halfplanes. The four maxima on the right-hand
side of Equation (3.10) are real numbers that depend only on 𝑎 and 𝑏; if we
refer to them as 𝜓∗

1, … , 𝜓∗
4, respectively, we obtain conditions of the form in

Equation (3.7).

▶ Lemma 3.17. The start-stop diagram can be computed in 𝑂(𝑛2 log 𝑛) time.

Proof. As in the discrete case, we can represent the function 𝜓u�u� = 𝜓(⋅, 𝑎, 𝑏) in
a data structure, where (𝑎, 𝑏) is the lower right corner of the current cell. Again,
we maintain this data structure while traversing the cells of the grid bottom
up within a column and reinitialize it for every column. We use exactly the
same data structure as before. By Lemma 3.16, the forbidden space in a cell is
described by Equation (3.7). We now need four queries to compute the values
of 𝜓∗

1, … , 𝜓∗
4, since these are the maxima of the function 𝜓u�u� on the intervals in

Equation (3.9). And hence, we get the free space of a cell 𝐶. This means we can
compute the start-stop diagram in 𝑂(𝑛2 log 𝑛) time.

Clearly, Lemma 3.16 implies the forbidden space within each cell of the
start-stop diagram is verticonvex and has constant complexity, so we can invoke
Theorem 3.3. We conclude:

▶ Theorem 3.18. Given a piecewise-constant function 𝑓 with 𝑛 breakpoints, a
threshold value ℎ > 0, and a ratio 𝜌 ∈ [0, 1], we can compute a minimal segmentation
for the condition that on a fraction of at least 𝜌 of a segment, the difference between
the maximum and minimum function value is at most ℎ in 𝑂(𝑛2 log 𝑛 + 𝑘𝑛2) time,
where 𝑘 is the size of a minimal segmentation.

Piecewise-linear functions. If the attribute function 𝑓 is piecewise linear, then
the grid induced by the breakpoints of 𝑓 may contain (many) tunnel cells.
Assume that we want to segment the attribute function 𝑓 depicted in Figure 3.12
on the outlier-tolerant criterion with ℎ = 2+𝜀, for some 0 ≤ 𝜀 ≤ 0.1 and 𝜌 = 2/3,
i.e., the difference between any two values is not more than approximately
2 but we can disregard 1/3 of the segment. For this criterion, the candidate
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Figure 3.12: A piecewise-linear attribute func-
tion that leads to tunnel cells.
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segments [𝑎, 𝑏2] and [𝑎, 𝑏3] are valid, as well as any candidate segment [𝑎, 𝑏]
for 𝑏1 < 𝑏 < 𝑏2. However, there exist candidate segments [𝑎, 𝑏] for 𝑏2 < 𝑏 < 𝑏3
and for 𝑏3 < 𝑏 < 𝑏4 which are not valid. Since 𝑏1, 𝑏2, 𝑏3, and 𝑏4 lie on the
same piece of the function 𝑓 , this implies that the vertical line at 𝑎 intersects
the forbidden space in this cell twice, once below 𝑏3 and once above 𝑏3.

It is now easy to see that we can create more than one tunnel cell per row: we
simply use the above construction with points 𝑎− = 𝑎−𝛿 and 𝑎+ = 𝑎+𝛿, for some
arbitrarily small 𝛿, as starting point of the segments. Since 𝑎 is a breakpoint,
these points lie on different pieces of 𝑓 , and hence we get two tunnel cells. In
both cases the endpoints of the segments lie on the piece [𝑏1, 𝑏4], so the cells
lie in the same row.

This example suggests that solving the problem for piecewise-linear attribute
functions efficiently calls for a different approach.

3.6.2 Segmentation on the Standard-Deviation Criterion
Another important non-monotone criterion that we consider involves the stan-
dard deviation of an attribute function. In this section we show how to com-
pute a minimal segmentation of a piecewise-constant function 𝑓 where each
segment has standard deviation not exceeding a given threshold value. Let
𝜇(𝑎, 𝑏) = ∫u�

u� 𝑓 (𝑦) d𝑦/(𝑏 − 𝑎) denote the mean value on a candidate segment
[𝑎, 𝑏]. The standard deviation 𝜎(𝑎, 𝑏) is given by

𝜎(𝑎, 𝑏) =

√
√√√
⎷

u�
∫
u�

(𝑓 (𝑥) − 𝜇(𝑎, 𝑏))2 d𝑥

𝑏 − 𝑎
.

Discrete Segmentation

When computing a discrete segmentation, we are allowed to partition 𝑓 only
where its value changes. Recall that 𝑓 is given as a sequence 𝑆 = 𝑠1, … , 𝑠u� of
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pairs 𝑠u� = (𝑣u�, 𝑤u�), where 𝑣u� is the value of piece 𝑖 and 𝑤u� is its weight.

▶ Lemma 3.19. The start-stop matrix can be computed in 𝑂(𝑛2) time.

Proof. To compute the start-stop matrix 𝐵, we need to test whether the standard
deviation of a segment is below the allowed threshold. We could compute
this in time linear in the length of a segment. However, we can also maintain
the mean 𝜇u�u� and standard deviation 𝜎u�u� of a weighted sequence 𝑆u�u�. We can
then compute the mean 𝜇u�(u�+1) and the standard deviation 𝜎u�(u�+1) for 𝑆u�(u�+1) in
constant time from 𝜇u�u� and 𝜎u�u�. This implies that we can fill 𝐵 in constant time
per cell and thus quadratic time in total.

Once we have 𝐵 we can compute a minimal segmentation in 𝑂(𝑛2) time
using the algorithm of Proposition 3.13. Hence:

▶ Proposition 3.20. For any value ℎ > 0, a discrete segmentation where each
segment has standard deviation at most ℎ can be computed in 𝑂(𝑛2) time.

Continuous Segmentation

In the continuous case, 𝑎 and 𝑏 can have any real value in 𝕋. Setting the
standard deviation 𝜎(𝑎, 𝑏) equal to the constant threshold value ℎ, we obtain
the functional description of the boundaries of the forbidden space in the
start-stop diagram:

𝜎(𝑎, 𝑏) = ℎ ⟺
u�

∫
u�

(𝑓 (𝑥) − 𝜇(𝑎, 𝑏))2 d𝑥 = (𝑏 − 𝑎) ⋅ ℎ2.

Further algebraic manipulations, using the fact that 𝑓 is piecewise constant,
give a cubic expression in 𝑎 and 𝑏. Hence, the boundaries of the forbidden
space within each cell of the start-stop diagram are piecewise-cubic curves.
This allows us to prove the following lemma:

▶ Lemma 3.21. Every cell of the start-stop diagram is verticonvex.

Proof. On a vertical line, the start point of the candidate segment is fixed. Let
it be ̃𝑎. Within a single cell, the function 𝑓 is constant. Hence, the function
value 𝑓 (𝑏) = 𝑐 at the end point 𝑏 of a segment [ ̃𝑎, 𝑏], for some 𝑐 ∈ ℝ. Varying 𝑏
implies including more or less of this constant 𝑐 in the values whose standard
deviation is considered.

Imagine 𝑏 is at its low end of the cell, and let it increase to its high end.
Then the mean 𝜇( ̃𝑎, 𝑏) tends monotonically towards 𝑐. There are four cases to
distinguish:
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1. Initially 𝜎( ̃𝑎, 𝑏) < ℎ and |𝜇( ̃𝑎, 𝑏) − 𝑐| < ℎ. Then the whole intersection of
the cell and the vertical line is allowed.

2. Initially 𝜎( ̃𝑎, 𝑏) > ℎ and |𝜇( ̃𝑎, 𝑏) − 𝑐| > ℎ. Then the lower end of the
intersection is forbidden, but possibly, at some value of 𝑏 it becomes
allowed.

3. Initially 𝜎( ̃𝑎, 𝑏) < ℎ and |𝜇( ̃𝑎, 𝑏) − 𝑐| > ℎ. Then the lower end of the
intersection is allowed, but possibly, it becomes forbidden and possibly
later allowed again.

4. Initially 𝜎( ̃𝑎, 𝑏) > ℎ and |𝜇( ̃𝑎, 𝑏) − 𝑐| < ℎ. Then the lower end of the
intersection is forbidden, but possibly, at some value of 𝑏 it becomes
allowed.

In other words, we have the property that if for some 𝑏 the candidate segment
becomes allowed, then it stays allowed. This is true for the following reason.
At the value ̃𝑏 of 𝑏 when [ ̃𝑎, 𝑏] becomes allowed, we have 𝜎( ̃𝑎, ̃𝑏) = ℎ and
|𝜇( ̃𝑎, ̃𝑏) − 𝑐| < ℎ. For increasing 𝑏 the average 𝜇( ̃𝑎, 𝑏) will tend monotonically
towards 𝑐. So for larger 𝑏 we have |𝜇( ̃𝑎, 𝑏) − 𝑐| < ℎ, and therefore 𝜎( ̃𝑎, 𝑏) < ℎ.
This proves the lemma.

▶ Lemma 3.22. The start-stop diagram can be computed in 𝑂(𝑛2) time.

Proof. The forbidden space in each cell has constant complexity, and given
the description of 𝜎 for cell 𝐶 we can compute 𝜎 for neighbors of 𝐶 in 𝑂(1)
time.

Using Theorem 3.3, we then obtain:

▶ Theorem 3.23. Given a piecewise-constant function 𝑓 with 𝑛 breakpoints and a
threshold value ℎ > 0, we can compute a minimal segmentation for the criterion that
the standard deviation of a segment is at most ℎ in 𝑂(𝑘𝑛2) time, where 𝑘 is the size of
a minimal segmentation.

Piecewise-linear functions. As with the outlier-tolerant criterion, if 𝑓 is piece-
wise linear then the grid decomposition of the start-stop diagram induced by
the breakpoints of 𝑓 may contain (many) tunnel cells. Consider for example
the function 𝑓 depicted in Figure 3.13. For both the candidate segments [𝑎, 𝑏2]
and [𝑎, 𝑏4] the mean is close to 0.5 and the standard deviation is close to 0.25.
However, there exists a value 𝑏2 < 𝑏 < 𝑏4, such that the mean and the standard
deviation of [𝑎, 𝑏] are smaller than 0.25. For example in Figure 3.13 the standard
deviation at 𝑏3 is below 0.2. So if we choose ℎ = 0.25 the cell [0, 𝑏1] × [𝑏1, 𝑏5] is
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Figure 3.13: A piecewise-linear at-
tribute function that leads to tunnel
cells.

a tunnel cell: the vertical line at 𝑎 intersects the forbidden space twice, once
below 𝑏3 and once above it. We can extend this example to construct two tunnel
cells as before. Therefore, we do not expect that there exists a straightforward
extension of our algorithm to this case.

3.7 Line Simplification

Even though we designed our framework for trajectory segmentation, the
approach is also applicable to different problems. In this section, we discuss
its use for certain polygonal line simplification problems.

Early line simplification algorithms try to reduce the number of vertices
of a polygonal line while keeping its global shape by selecting a subset of
the vertices [42, 73]. A different approach to the problem is taken by line
simplification methods that allow the vertices of the simplified polyline to lie
anywhere [65], and only require the shape to resemble the input curve. We
propose a version of line simplification that compromises these two extremes:
we restrict the vertices of the simplified polyline to lie on the input curve,
but do not insist that they coincide with input vertices. A single edge of a
simplified polyline is called a shortcut and it can replace a piece of the original
polyline, namely the piece between the endpoints of the shortcut (which lie on
the original polyline). We cast line simplification problems into our framework:
a simplification is a staircase in the start-stop diagram.

The most common criterion for line simplification is the Hausdorff distance.
An edge of a simplification with its endpoints on the input polyline is valid if
the Hausdorff distance between that edge and the polyline piece it replaces
is at most a pre-specified value. It is easy to verify that the resulting cells in
the start-stop diagram can be tunnel cells, and there can be many in a single
row. Hence, our approach does not give a polynomial-time algorithm for the
simplification problem using the Hausdorff distance.

Next we consider the dilation criterion, where every edge of the simplification
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can be at most a given factor shorter than the polyline piece it replaces. Fix a
starting point and an edge that contains the end point, and parameterize the
position on the end edge. The function that gives the dilation expressed in
this parameter is the ratio of a linear function and a hyperbolic function that
does not grow faster than the linear function. It can easily be verified that the
dilation measure gives verticonvex cells in the start-stop diagram.

Another criterion that we can handle easily is requiring that shortcuts can-
not be shorter than a given threshold. This criterion also gives verticonvex
cells in the start-stop diagram and we obtain the analogous result. However,
the conjunction of the two criteria, dilation and non-shortness, does not give
verticonvex cells, which is to be expected after the discussion in Section 3.3.

Now suppose that not only a polyline 𝑃 but also a convex polygonal obsta-
cle is given, and assume that they do not intersect. We are interested in the
minimum-link simplification of 𝑃 that also does not intersect the obstacle. It
is easy to see that all cells are verticonvex. If the obstacle has 𝑚 vertices, the
complexity of the forbidden space in each cell is 𝑂(𝑚), and can be computed
in 𝑂(𝑚) time by rotating a line along the boundary of the obstacle. Thus, we
can compute the start-stop diagram in 𝑂(𝑛2𝑚) time. When we compute the
(outgoing) (𝑖 + 1)-reachable intervals from the (incoming) 𝑖-reachable intervals
in a cell 𝐶, we have to compute the highest (lowest) point 𝑝 below (above)
the forbidden space for which 𝑝u� lies in an incoming interval. Since all cells
are verticonvex, the incoming intervals in 𝐶 are incident to the left or right
boundary of the cell, and they grow monotonically in each round. It follows
that we can maintain 𝑝 by walking along the boundary of the forbidden space.
Therefore, we can compute the 𝑘-reachable space, where 𝑘 is the length of a
minimum-link simplification of 𝑃, in 𝑂(𝑛2(𝑚 + 𝑘)) time. The total running
time of our algorithm is thus also 𝑂(𝑛2(𝑚 + 𝑘)).

Similarly, assume that a polyline in 3-dimensional space is given, together
with a convex polyhedral obstacle. Again cells are verticonvex, and we obtain
the same running time as in the planar case due to the following:

▶ Lemma 3.24. The complexity of a cell in the start-stop diagram is 𝑂(𝑚), and can
be computed in 𝑂(𝑚) time.

Proof. For any cell 𝐶, let 𝑒 and 𝑒′ be the edges on which the starting and ending
points lie, respectively. For any point 𝑎 on 𝑒, consider the triangle △(𝑎, 𝑒′) that
𝑎 forms with edge 𝑒′, and consider how it intersects with the obstacle 𝒪, see
Figure 3.14. Because 𝒪 is convex, there are up to two rays from 𝑎 inside △(𝑎, 𝑒′)
to 𝑒′ that are tangent to 𝒪, and generally these tangencies involve edges of 𝒪.
Now consider 𝑎 moving over 𝑒 from one endpoint to the other, and consider one
such a tangent ray 𝑟. Let 𝑏(𝑎) be the point on 𝑒′ hit by 𝑟. While 𝑏(𝑎) point moves,
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Figure 3.14: The triangle formed by u� and u�′ intersecting an obstacle, and the tangents from u� to u�′.

it traces the boundary of the forbidden space in the cell 𝐶. As long as the edge
𝑓 of 𝒪 that defines 𝑟 remains the same, the movement of 𝑏(𝑎) stays the same.
Thus, we get one curve in 𝐶 bounding the forbidden space. The edge 𝑓 of 𝒪 can
change in two ways, causing a change in movement of 𝑏(𝑎), and thus a different
curve bounding the forbidden space in 𝐶: (i) when 𝑟 encounters a vertex, and
(ii) when 𝑟 aligns with a face of 𝒪 incident to 𝑓 . It is easy to see that 𝑎 and 𝑏(𝑎)
can become colinear with a vertex or a face of 𝒪 at most once. It follows that
the total number of events, and thus the complexity of the boundary of the
forbidden space, is at most 𝑂(𝑚).

We can compute the boundary of the forbidden space by maintaining the
obstacle edge 𝑓 defining ray 𝑟, while moving 𝑎. We can determine the next
event in 𝑂(1) time. At an event of type (i) we find the new edge 𝑓 ′ defining 𝑟 in
time proportional to the number of edges incident to the obstacle vertex. At an
event of type (ii) this takes time proportional to the number of edges bounding
the obstacle face. Since each vertex and each face generate at most one event,
the total running time is 𝑂(𝑚).
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If the obstacle is not convex, then we can get tunnel cells and we do not
obtain a polynomial-time algorithm. If we have more than one obstacle then
we can get tunnel cells as well. We summarize our results in the following
proposition.

▶ Proposition 3.25. Given a polygonal line 𝑃 with 𝑛 vertices we can compute a
minimum-link simplification 𝑃′ of 𝑃 where all 𝑘 vertices of 𝑃′ lie on 𝑃, and such that

• the dilation of each edge of 𝑃′ is at most a given value 𝛿, in 𝑂(𝑛2𝑘) time, if 𝑃
lies in the plane;

• the length of each edge of 𝑃′ is at least a given length 𝛾, in 𝑂(𝑛2𝑘) time, if 𝑃 lies
in ℝu� (for any constant 𝑑); or

• the simplification 𝑃′ does not intersect a given convex polyhedral obstacle 𝒪, in
𝑂(𝑛2(𝑚 + 𝑘)) time, where 𝑚 is the number of vertices in 𝒪, if 𝑃 and 𝒪 lie in
ℝ2 or ℝ3.

3.8 Concluding Remarks
We analyzed the problem of segmenting a trajectory for non-monotone criteria.
For monotone criteria efficient algorithms are known [31]. We showed that
also for certain non-monotone criteria polynomial-time solutions exist. In
particular, we presented a generic approach to segment a trajectory using a
start-stop diagram, and we identified properties of the start-stop diagram that
allow for efficient segmentation. Computing a segmentation from an arbitrary
start-stop diagram is NP-hard.

For two concrete non-monotone criteria we presented efficient algorithms
to compute the start-stop diagram. We also showed that the resulting dia-
grams indeed have the properties that allow for efficient segmentation. As
a result, we can compute an optimal segmentation of a trajectory based on
the outlier-tolerant criterion in 𝑂(𝑛2 log 𝑛 + 𝑘𝑛2) time, and on the standard
deviation criterion in 𝑂(𝑘𝑛2) time, where 𝑛 is the number of vertices of the
input trajectory and 𝑘 is the number of segments in an optimal solution. These
two criteria are relevant in practice, since they are more robust against noise
than related monotone criteria.

The question for a complete characterization of the start-stop diagrams that
allow for efficient segmentation is still open. We answered this question par-
tially, but more can perhaps be said. Furthermore, the analyses of the running
times for the outlier-tolerant criterion and the standard deviation criterion
are based on the assumption that the attribute function is piecewise constant.
While many second-order attributes, such as speed and heading, are piecewise
constant due to the linear interpolation of the trajectory, it would also be inter-



56 Chapter 3 Non-Monotone Segmentation

esting to see whether similar results can be obtained for, e.g., piecewise-linear
functions. The examples given in Sections 3.6.1 and 3.6.2 seem to indicate
that the methods developed in this paper do not easily apply if the attribute
functions are piecewise linear.

Finally, our two-step approach of first computing the start-stop diagram
explicitly, and then solving the segmentation problem, inherently requires
at least Ω(𝑛2) time and space. An intriguing open problem is whether a
subquadratic solution may be possible.



Finding Hotspots

Chapter4
In this chapter we focus on the detection of interesting places in trajectory

data. In particular, we give algorithms to identify regions where a moving
entity spends a large amount of time. We refer to such a region as a hotspot,
and model it as an axis-aligned square whose location is not known yet. We
distinguish several versions of the problem of finding square-shaped hotspots.
The problems we consider are:

1. The size of the square is fixed and we wish to find the placement that
maximizes the time the entity spent inside. Here we allow the entity to
leave the region and return to it later; all visits count for the duration.

2. We are given a duration and want to determine the smallest square and
its placement so that the entity is inside for at least the given duration.

3. We consider problem 1, but now we are interested in contiguous presence
inside the square, so only one of the visits to the square counts.

4. The same for problem 2.
5. We do not fix duration nor square size, but optimize a relative measure

that is the ratio of the duration and the square side length.
6. We consider optimizing a relative measure like in problem 5, but now

for contiguous presence in the square.

We present our results for a single trajectory, but they immediately extend to
the case of multiple trajectories.

Problem statement. Recall that a trajectory 𝒯 is a continuous piecewise-
linear function, mapping time to points in the plane, that we write 𝒯(𝑡) for
the point on 𝒯 at time 𝑡 ∈ 𝕋, and that we denote the sub-trajectory from time
𝑠 to time 𝑡, with 𝑠 ≤ 𝑡 ∈ 𝕋, by 𝒯[𝑠, 𝑡]. The edges of 𝒯 are line segments in
the plane. With slight abuse of notation we use 𝒯 to denote the trajectory as
well as the set of edges {𝑒1, .., 𝑒u�} of the trajectory. An edge 𝑒 between points
𝑢 and 𝑣, is a line segment 𝑒 = 𝑢𝑣 of length ‖𝑒‖. We use the same notation to
denote the length of (sub-)trajectories. By general position, we assume that the
end points of these segments, the vertices of 𝒯, all have distinct 𝑥-coordinates
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and 𝑦-coordinates. Our results do not depend on this assumption but the
description is considerably easier because of it.

Let ℋ ⊂ ℝ2 denote the axis-parallel square hotspot with center 𝑐 and side
length 2𝑟. We refer to 𝑟 as the radius of ℋ. The boundary of ℋ is denoted
by 𝜕ℋ. The function Ξ(ℋ) = ∑u�∈u� ‖𝑒 ∩ ℋ‖ describes the total length of the
trajectory inside ℋ. Similarly, Φ(ℋ) = max{‖𝒯[𝑠, 𝑡]‖ ∣ 𝑠, 𝑡 ∈ 𝕋 ∧ 𝒯[𝑠, 𝑡] ⊆ ℋ}
denotes the length of the longest (contiguous) sub-trajectory in ℋ. We define
Ψ(ℋ) = Ξ(ℋ)/2𝑟 and Γ(ℋ) = Φ(ℋ)/2𝑟 to denote the relative total trajectory
length, and the relative contiguous trajectory length, in ℋ, respectively. If the
center 𝑐 and/or the radius 𝑟 of a hotspot ℋ are clear from the context, we may
sometimes write Ξ(𝑐, 𝑟), Ξ(𝑐), or Ξ(𝑟) instead of Ξ(ℋ). We do the same for Φ,
Ψ, and Γ. We can now formalize the five problems that we study as follows.

1. Given 𝑟, maximize Ξ(⋅, 𝑟) over all square placements.
2. Given 𝐿, find a smallest hotspot ℋ∗ with Ξ(ℋ∗) ≥ 𝐿 over all square

placements and sizes.
3. Given 𝑟, maximize Φ(⋅, 𝑟) over all square placements.
4. Given 𝐿, find a smallest hotspot ℋ∗ with Φ(ℋ∗) ≥ 𝐿, over all square

placements and sizes.
5. Find a hotspot ℋ∗ that maximizes Ψ, over all square placements and

sizes.
6. Find a hotspot ℋ∗ that maximizes Γ, over all square placements and

sizes.
We describe our algorithms by considering length rather than duration because
it is more intuitive and easier to describe. Adapting the algorithms to consider
duration is straightforward, however. We simply observe that all our results
still hold for weighted edges, and that we can use the duration to assign a weight
to each edge. We then simply choose the weights so that maximizing weighted
length inside ℋ is the same as maximizing duration inside ℋ.

Results and organization. Our algorithms that solve the above problems all
use a key property of Ξ, namely that it is a linear function in 𝑐 and 𝑟. We prove
this in Section 4.1, and discuss how the shape of ℋ affects this property. In
Section 4.2 we study problems 1 and 2, and show that we can solve them in
𝑂(𝑛2) time and 𝑂(𝑛2 log2 𝑛) time, respectively. We focus on the contiguous-
length variants, problems 3 and 4, in Section 4.3. We show that we can solve
both problems in 𝑂(𝑛 log 𝑛) time. In Section 4.4 we present an 𝑂(𝑛3) time
algorithm to maximize Ψ, and an 𝑂(𝑛2) time algorithm to maximize Γ in ℋ.
That is, we solve the relative length versions of the problem: problems 5 and 6.
We review some extensions, like multiple entities and different shapes for ℋ,
in Section 4.5.
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4.1 Properties of Ξ
We start by showing that Ξ and Φ are piecewise-linear functions, which is key
in our algorithms.
▶ Lemma 4.1. Consider a square hotspot ℋ with center 𝑐 and radius 𝑟. The function
Ξ is piecewise linear in 𝑐 and 𝑟. The break points of Ξ correspond to hotspots such that:
(i) a vertex of 𝒯 lies on a side of ℋ, or (ii) a corner of ℋ lies on an edge of 𝒯.
Proof. Fix an edge 𝑒 ∈ 𝒯, and consider the function Ξu�(ℋ) = ‖𝑒∩ℋ‖, denoting
the length of the part of 𝑒 that lies in ℋ. Next, we show that while 𝑒 intersects
a fixed set of sides of ℋ, the function Ξu� is linear (in 𝑐 and 𝑟). It then follows
that Ξu� is piecewise linear, and has a break point when one of the vertices of 𝑒
intersects the boundary of ℋ, or when 𝑒 intersects a corner of ℋ. Since Ξ is
the sum of these functions Ξu�, for 𝑒 ∈ 𝒯, it is also piecewise linear, and has a
break point when one of the functions Ξu� has a break point. Hence, the break
points of Ξ correspond exactly to events of type (i) and (ii).

Since ℋ is convex, the intersection between 𝑒 = 𝑢𝑣 and ℋ is single con-
tiguous line segment, a singleton point, or it is empty. Fix the set of sides
of ℋ intersected by 𝑒, let 𝑝u� = (1 − 𝜆)𝑢 + 𝜆𝑣, and let 𝛼 and 𝛽 be functions
such that 𝑝u�(u�,u�)𝑝u�(u�,u�) = 𝑒 ∩ ℋ. We then have Ξu�(ℋ) = Ξu�(𝑐, 𝑟) = ‖𝑒 ∩ ℋ‖ =
‖𝑒‖ (𝛽(𝑐, 𝑟) − 𝛼(𝑐, 𝑟)). It is now an easy exercise to show that 𝛼 and 𝛽 are linear
functions in 𝑐 and 𝑟. It follows that ‖𝑒 ∩ ℋ‖ is piecewise linear in 𝑐 and 𝑟, and
hence Ξ is piecewise linear as well.

Let Ξu� denote the function Ξ, restricted to a single piece 𝜋. Since the sum of
a set of linear functions is linear, there is a constant-size description of Ξu� . It
follows that we can evaluate Ξu� for some ℋ ∈ 𝜋, and compute the derivative
of Ξu� in constant time.

Using essentially the same argument as in Lemma 4.1 we can show that Φ is
piecewise linear. We characterize the break points of Φ in Section 4.3.

Hotspots with curved boundaries. When ℋ has a curved boundary, we can
no longer describe the intersection points between 𝜕ℋ and a single edge using
linear functions of 𝑐 and 𝑟. For example, in case ℋ is a disk, the intersection
points are described by an equation of the form √𝛾(𝑐, 𝑟), where 𝛾 is a quadratic
function in 𝑐 and 𝑟. This means that on a single piece, Ξ is the sum of square
roots. A description of this function has linear size, and linear time is required
to evaluate it. Worse still is that we can no longer analytically compute the roots
of the derivative of Ξ. Since we need those roots to compute the maximum of
Ξ, we can no longer maximize Ξ either. For this reason, we focus on square
hotspots.
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Figure 4.1: A trajectory and the cor-
responding subdivision u�. The
line segments corresponding to a
single edge u� are shown in red.

4.2 Total Length

4.2.1 Fixed Radius
When the radius 𝑟 of ℋ is fixed, we can compute a placement that maximizes Ξ
using a method similar to that of Mount, Silverman, and Wu [98]. Let 𝑐 be the
center of ℋ, and consider the parameter space of 𝑐. We compute a subdivision
𝒮 of the parameter space such that inside each cell, Ξ is a simple linear function.
It follows that maxima occur only at vertices of this subdivision. For each cell
𝐶, we compute a description of Ξ and evaluate it at the vertices of 𝐶. We can
then just select the maximum over all cells.

Each edge of 𝒯 yields 𝑂(1) line segments in 𝒮 (see Figure 4.1). Thus 𝒮 is the
arrangement of 𝑂(𝑛) line segments and can be constructed in 𝑂(𝑛2) time.

Let Ξu� denote the function Ξ restricted to cell 𝐶. In each cell of 𝒮 we can
compute Ξu� and its maximum from scratch. This takes 𝑂(𝑛) time. However,
for neighboring cells 𝐶 and 𝐷, Ξu� and Ξu� can differ in only two ways: (i) the
set of contributing edges has increased or decreased by one or two edges, or
(ii) an edge intersects a different side of ℋ (Lemma 4.1). So, we can compute
a function Δu�,u� that describes these changes in constant time. We then have
Ξu�(𝑐) = Ξu�(𝑐) + Δu�,u�(𝑐), and thus we can compute Ξu� from Ξu� in constant
time. Since 𝒮 consists of 𝑂(𝑛2) cells we conclude:

▶ Theorem 4.2. Given a radius 𝑟, we can find a hotspot ℋ∗ with radius 𝑟 that
maximizes Ξ in 𝑂(𝑛2) time.

4.2.2 Fixed Length
We are given a threshold 𝐿, and we need to find the center 𝑐∗ and the radius 𝑟∗

of a minimum-size hotspot ℋ∗ with Ξ(𝑐∗, 𝑟∗) ≥ 𝐿.
The general idea is to use Megiddo’s parametric search technique that we

described in Chapter 2.1. We can use our algorithm from the previous section
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as the sequential decision algorithm 𝒜, by simply computing the maximum
length 𝐿∗ in a hotspot of radius 𝑟 and checking if 𝐿∗ ≥ 𝐿. So all that remains
is to construct an analogous parallel decision algorithm. This will give us an
efficient (sequential) algorithm to compute 𝑟∗.

A parallel decision algorithm. Let 𝑟 be the given radius. We use the same
approach as in the previous section: we construct the subdivision 𝒮, and
traverse all cells 𝐶 to compute Ξu� and its maximum. Constructing 𝒮 and its
dual graph 𝒢 takes 𝑂(log log∗ 𝑛) time, using 𝑂(𝑛2/ log 𝑛) processors [10]. The
graph 𝒢 has a node 𝑣 for every face 𝐹u� of 𝒮, and an arc (𝑢, 𝑣) for each pair of
adjacent faces 𝐹u� and 𝐹u�.1

Next, we compute a spanning tree of 𝒢 and its Euler tour ℰ = 𝜖1, .., 𝜖u�, with
𝑚 = 𝑂(𝑛2). This takes 𝑂(log 𝑛) time using 𝑂(𝑛2) processors [104, 111]. Let Ξu�
denote the function Ξ in node 𝜖u�, and let Δu�,u� be the difference function between
Ξu� and Ξu�, that is, Δu�,u�(𝑐) = Ξu�(𝑐) − Ξu�(𝑐). For two consecutive nodes 𝜖u� and
𝜖u�+1 we can compute this function Δu�,u�+1 without having computed Ξu� and Ξu�+1
since we know which trajectory edge starts or stops to intersect ℋ (or which
edge now intersects a different side of ℋ). Once we have Δu�,u� and Δu�,ℓ we can
obtain Δu�,ℓ by combining the two functions. So, the main idea is to compute
function Ξ1, and all functions Δ1,u� to obtain the functions Ξu�. Next, we show
that this can be done using 𝑂(𝑛2) processors in 𝑂(log 𝑛) time.

▶ Lemma 4.3. Given 𝑂(𝑛) processors, we can compute the function Ξ for a given
node 𝑣 of 𝒢 in 𝑂(log 𝑛) time.

Proof. We use one processor for each trajectory edge 𝑒. Each processor com-
putes the function Ξu�u�(𝑐) = ‖𝑒 ∩ ℋ‖. We then add these functions together in
pairs of two, and repeat this process until we have one function representing
Ξ. This takes 𝑂(log 𝑛) steps.

▶ Lemma 4.4. Given 𝑂(𝑚) processors, with 𝑚 ≥ 𝑛, and a path ℰ of length 𝑚, we
can compute all functions Ξu� in 𝑂(log 𝑚) time.

Proof. By Lemma 4.3 we can compute Ξ1 in 𝑂(log 𝑛) = 𝑂(log 𝑚) time. We
now show how to compute all functions Δ1,u� in 𝑂(log 𝑚) time in total. We then
use one processor for each 𝑖 to compute Ξu� from Ξ1 and Δ1,u� in constant time.

We represent ℰ as a balanced binary tree 𝑇. Each node 𝑣u�,u� in 𝑇 represents a
subpath 𝜖u�, .., 𝜖u�. The leaves of 𝑇 simply correspond to the singleton paths 𝜖u�. We
compute the functions Δu�,u� for each internal node in the tree using a bottom-up

1To avoid confusion with the vertices and edges of u�, we use the terms “node” and “arc” for the
vertices and edges of graph u�.
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Figure 4.2: We com-
pute Δu�,u� for all nodes
in the tree bottom up
(blue arrows), then
we compute all Δ1,u�
for all leaves u�u� by
traversing a root to
leaf path, and sum-
ming the red nodes.

procedure. With 𝑂(𝑚) processors, each one starting in a different leaf, this
takes 𝑂(log 𝑚) time. For a given leaf 𝜖u�, we can compute Δ1,u� by traversing 𝑇
from the root to 𝜖u�: we sum the functions stored at the left child of each node 𝑣
where the path turns right, and add this to the function stored at the leaf of 𝜖u�
(see Figure 4.2). This takes 𝑂(log 𝑚) time. Since we have 𝑂(𝑚) processors, we
can compute all functions Δ1,u� in parallel.

By Lemma 4.4 we can compute Ξu� for all nodes in ℰ in 𝑂(log 𝑚) = 𝑂(log(𝑛2))
= 𝑂(log 𝑛) time using 𝑂(𝑛2) processors. Once we have all functions Ξu�, we
can use the same tactic to compute the global maximum in 𝑂(log 𝑛) time.

▶ Proposition 4.5. Given a threshold 𝐿, a radius 𝑟, we can decide if there is a hotspot
ℋ with center 𝑐 and radius 𝑟 such that Ξ(𝑐, 𝑟) ≥ 𝐿 in 𝑂(log 𝑛) time using 𝑂(𝑛2)
processors.

Computing a minimum-size hotspot. We use the above decision algorithm
together with the parametric search technique. This gives us a sequential
algorithm to compute a minimum-size hotspot. In general parametric search
takes 𝑂(𝑃𝑇u� + 𝑇u�𝑇 log 𝑃) time (Theorem 2.2). From Theorem 4.2 we have
𝑇 = 𝑂(𝑛2) , and from Proposition 4.5 we have 𝑇u� = 𝑂(log 𝑛) and 𝑃 = 𝑂(𝑛2).
Plugging in these results gives us:

▶ Theorem 4.6. Given a threshold 𝐿, we can find a minimum-size hotspot ℋ∗ with
center 𝑐∗ and radius 𝑟∗ such that Ξ(𝑐∗, 𝑟∗) ≥ 𝐿 in 𝑂(𝑛2 log2 𝑛) time.

4.3 Contiguous Length
In this section we focus on finding a hotspot containing a longest contigu-
ous sub-trajectory. Recall that 𝒯[𝑠, 𝑡] is the sub-trajectory between 𝑠 and 𝑡.
With some abuse of notation we will also write 𝒯[𝑝, 𝑞] = 𝒯[𝑡u�, 𝑡u�] for the
sub-trajectory between points 𝑝 = 𝒯(𝑡u�) and 𝑞 = 𝒯(𝑡u�).
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4.3.1 Fixed Radius
Let 𝒯∗ = 𝒯[𝑝∗, 𝑞∗] be a longest sub-trajectory contained in any hotspot of
radius 𝑟, and let 𝑤 = 2𝑟. We will state and prove properties of 𝒯∗ that will
help us to compute it efficiently. First we make the simple observation that the
starting point 𝑝∗ of 𝒯∗ will be on the boundary of ℋ∗, with the one exception
when 𝒯∗ starts at the start of the trajectory 𝒯. This exception is easy to handle
in 𝑂(𝑛) time, so we ignore it and assume that 𝒯∗ starts at a point 𝑝∗ on 𝜕ℋ∗.

▶ Lemma 4.7. There is a hotspot ℋ∗ that maximizes Φ, and such that at least one
vertex of 𝒯 lies on the boundary of ℋ∗. Vertex 𝑣 lies on 𝒯∗.

Proof. Proof by contradiction. Assume that ℋ∗ maximizes Φ, and there is no
hotspot ℋ with Φ(ℋ) ≥ Φ(ℋ∗) with a vertex on 𝜕ℋ. Since ℋ∗ is optimal,
the longest contiguous sub-trajectory 𝒯∗ = 𝒯[𝑝∗, 𝑞∗] in ℋ∗ must touch two
opposite sides of ℋ∗. Assume without loss of generality that these sides are
horizontal.

Let ℋ′ = ℋ∗ and let 𝒯′ be a maximal length sub-trajectory in ℋ′, such that
initially 𝒯′ = 𝒯∗. It is easy to see that we can shift ℋ′ horizontally—while
keeping 𝒯∗ inside it—until either a vertex of 𝒯′ lies on (a vertical side of)
𝜕ℋ′ or 𝑝∗ lies on a corner of ℋ′. In the former case we immediately obtain a
contradiction. In the latter case, translate ℋ′ while keeping the starting point
𝑝′ of 𝒯′ on the same corner of ℋ′ (moving the starting point of 𝒯′ earlier or
later). Let 𝜙(𝑡) denote the length of 𝒯′ as a function of the starting time 𝑡 = 𝑡u�′

of 𝒯′. Function 𝜙 has break points when 𝑝′ or 𝑞′ crosses a vertex or when ℋ′

gets a vertex of 𝒯′ on its boundary. Since 𝜙 is (piecewise) linear, there is at least
one direction such that we can translate ℋ′ without decreasing 𝜙(ℋ′) until 𝜙
is at a break point. At such a break point ℋ′ has a vertex of 𝒯′ on its boundary.
Contradiction. This completes the proof.

▶ Corollary 4.8. For starting point 𝑝∗ = (𝑝∗
u�, 𝑝∗

u�) of 𝒯∗, and some vertex 𝑣 = (𝑣u�, 𝑣u�)
of 𝒯 we have that (i) 𝑝∗

u� ∈ {𝑣u� − 𝑤, 𝑣u�, 𝑣u� + 𝑤} or 𝑝∗
u� ∈ {𝑣u� − 𝑤, 𝑣u�, 𝑣u� + 𝑤}, and (ii)

𝑣 ∈ 𝒯∗.

We now examine all vertices and all six cases from Corollary 4.8. We know
that one of these cases will give us the starting point 𝑝∗ of 𝒯∗.

Let 𝑣 be some vertex of 𝒯 and assume that we are testing the case where
𝑝∗

u� = 𝑣u� − 𝑤; all other cases are symmetric or handled analogously. In this
case, the unknown point 𝑝∗ lies on the bottom side of ℋ∗ and 𝑣 lies on the
top side. Furthermore, 𝑡u�∗ is the earliest time for which 𝑝∗

u� = 𝑣u� − 𝑤, and
𝒯[𝑝∗, 𝑣] ⊆ ℓ+

u�∗, where ℓ+
u�∗ is the upper half-plane bounded by the horizontal

line with 𝑦-coordinate 𝑝∗
u� = 𝑣u� − 𝑤. Assume that we have the earliest point
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Figure 4.3: Determining the earliest
starting time u�u�, and the latest end-
ing time u�u� such that u�[u�, u�] lies in
the slab [u�u� − u�, u�u�].

𝑝 before 𝑣 with 𝑦-coordinate 𝑣u� − 𝑤, and such that 𝒯[𝑝, 𝑣] ⊆ ℓ+
u� . If 𝒯[𝑡u�, 𝑡u�]

contains any point with 𝑦-coordinate greater than 𝑣u�, then 𝑝 is not a candidate
for the start of the optimal sub-trajectory 𝒯∗, otherwise we proceed to compute
a maximal time interval 𝐼 starting at 𝑝 such that 𝐼 has its 𝑦-coordinates in the
range [𝑣u� − 𝑤, 𝑣u�]. Suppose that we have 𝐼 = [𝑝, 𝑞]. Then we test whether 𝐼
satisfies the condition that the 𝑥-extent of 𝒯[𝑝, 𝑞] is at most 𝑤. If so, then 𝒯[𝑝, 𝑞]
is a candidate to be 𝒯∗. After testing all vertices 𝑣 and all six cases, we choose
the longest one as 𝒯∗.

We need to find an efficient way to implement the query for 𝑝, the query
for 𝑞, and the test whether 𝒯[𝑝, 𝑞] has an 𝑥-extent of at most 𝑤. Consider the
polygonal line representing 𝒯(𝑡)u� as a function of 𝑡, see Figure 4.3. Assume
that we have a horizontal decomposition of this polyline, preprocessed for
efficient planar point location [37]. This means that we can perform horizontal
ray shooting queries in 𝑂(log 𝑛) time. A horizontal ray shooting query to
the left from a point ( ̂𝑡, ̂𝑦) asks for the most recent time before ̂𝑡 where the
trajectory has 𝑦-coordinate ̂𝑦. Similarly, a ray shooting query to the right asks
for the earliest time after ̂𝑡 where the trajectory has 𝑦-coordinate ̂𝑦. Hence, to
determine 𝑝 given 𝑣, we perform a ray shooting query to the left from the point
(𝑡u�, 𝑣u� −𝑤), giving us (𝑡u�′, 𝑝′

u�). By construction, we have 𝒯[𝑝′, 𝑣] ⊂ ℓ+
u�′, so either

the trajectory enters the vertical slab [𝑣u� − 𝑤, 𝑣u�] at 𝑝′, and thus 𝑝 = 𝑝′, or 𝑝′

is a vertex where the 𝑦-coordinate of 𝒯 is at a local minimum. By our general
position assumption there is at most one such vertex, so with one more ray
shooting query to the left we find 𝑝.2

To find point 𝑞, we then perform a ray shooting query to the right from
(𝑡u�, 𝑝u� + 𝑤) = (𝑡u�, 𝑣u�). If the ray hits an edge before 𝑡u� then 𝑝 is not a candidate
start point and we stop. If the ray hits 𝑣 and 𝒯 extends upwards after 𝑣, then
[𝑡u�, 𝑡u�] is a candidate time interval that could give 𝒯∗. Otherwise, 𝑣 is a local
maximum and we perform two ray shooting queries to the right: from (𝑡u�, 𝑣u�)
and from (𝑡u�, 𝑣u� − 𝑤). The earliest time of the two answers gives us 𝑞 and thus

2We can handle degenerate situations where there may be a sequence of vertices all with
u�-coordinate u�u� − u� by considering the line segments to be open-ended at these vertices.
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the interval 𝐼 to test.
Finally, we test whether the 𝑥-extent of 𝐼 is at most 𝑤. This can be done in

constant time, using a data structure storing the 𝑥-coordinates of the vertices
of 𝒯 (in order along the trajectory) and supporting range minimum (and range
maximum) queries. Such a data structure can be built in 𝑂(𝑛) time [15]. Alter-
natively, we can answer these queries in 𝑂(log 𝑛) query time, after 𝑂(𝑛 log 𝑛)
preprocessing time using an augmented binary search tree: every leaf repre-
sents an edge of 𝒯, and every internal node represents a sub-trajectory. Every
internal node is augmented with two values: the minimum and maximum
occurring 𝑥-coordinate of the edges in the leaves below it.

Analysis. In the preprocessing we build the ray shooting structures (for (𝑡, 𝑦)
and (𝑡, 𝑥)) and the data structures to test the 𝑥-extent of an interval (for 𝑥 and for
𝑦). This takes 𝑂(𝑛 log 𝑛) time. Then for every vertex 𝑣, we can find candidate
intervals in 𝑂(log 𝑛) time.

▶ Theorem 4.9. Given a radius 𝑟, we can find a hotspot ℋ∗ with radius 𝑟 that
maximizes Φ in 𝑂(𝑛 log 𝑛) time.

4.3.2 Fixed Length
We are given a threshold 𝐿 on the minimum required trajectory length in the
hotspot, and we want to find a smallest hotspot ℋ∗ that contains a sub-trajectory
of length 𝐿.

Let 𝜙(𝑡) be the minimum radius of a hotspot ℋ containing a sub-trajectory
𝒯[𝑝, 𝑞] of length 𝐿 that enters ℋ, and thus starts, at time 𝑡 = 𝑡u�, and let 𝑢 and 𝑣
be the first and the last internal vertex in 𝒯[𝑝, 𝑞], respectively. We denote the
bounding box of a sub-trajectory 𝒯[𝑎, 𝑏] by ℬℬ(𝑎, 𝑏). We now prove:

▶ Lemma 4.10. The function 𝜙 is piecewise linear. The 𝑂(𝑛) break points of 𝜙
correspond to hotspots ℋ such that: (i) 𝑝 is a vertex of 𝒯, (ii) 𝑞 is a vertex of 𝒯, (iii) 𝑝u�
(𝑝u�) coincides with the minimum or maximum 𝑥-coordinate (𝑦-coordinate) of ℬℬ(𝑢, 𝑣),
(iv) 𝑞u� (𝑞u�) coincides with the minimum or maximum 𝑥-coordinate (𝑦-coordinate) of
ℬℬ(𝑢, 𝑣), and (v) 𝑝u� = 𝑞u� or 𝑝u� = 𝑞u�.

Proof. We start by showing that 𝜙 is piecewise-linear. Let 𝑒 be the edge con-
taining 𝑝 and 𝑓 the edge containing 𝑞. If we move point 𝑝 along 𝑒 by some small
amount Δ, the length inside the hotspot decreases linearly in Δ. To maintain
length 𝐿 inside ℋ, point 𝑞 has to move along 𝑓 (see Figure 4.4). The required
increase in length on 𝑓 is identical to the decrease in length on edge 𝑒, namely
Δ. It follows that 𝑝 and 𝑞 both move linearly in Δ. Therefore, the radius of ℋ is
linear as well. This in turn implies that 𝜙 is linear.
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Figure 4.4: The smallest hotspot for several different starting times. The offset in length Δ is indicated
in purple, and ℬℬ(u�, u�) in orange. (a) and (b) correspond to break points of a piece u� of u�. (c) is a
hotspot on piece u� + 1.

Next, we show that the break points of 𝜙 are of types (i) to (v). At any time
𝑡, a hotspot ℋ with radius 𝜙(𝑡) has two opposite sides, 𝑠1 and 𝑠2, that both
contain an internal vertex or an end point of 𝒯[𝑝, 𝑞]. As time 𝑡 varies, 𝑠1 and
𝑠2 move. Function 𝜙 has a break point if and only if the movement of 𝑠1 and
𝑠2 changes. This movement changes when the movement of 𝑝 and 𝑞 changes,
and when the objects defining 𝑠1 and 𝑠2 change (e.g. 𝑠1 was defined by 𝑝, but is
now defined by an internal vertex of 𝒯[𝑝, 𝑞]). The former changes occur when
𝑝 and 𝑞 are at trajectory vertices, thus yielding break points of type (i) and (ii).
The latter changes occur exactly at events of type (iii) to (v), thus yielding break
points of type (iii) to (v).

Finally, we argue that there are 𝑂(𝑛) break points. Clearly, there are 𝑂(𝑛)
break points of type (i) and (ii). It follows that there are also only 𝑂(𝑛) pairs of
edges (𝑒, 𝑓 ) such that 𝑝 lies on 𝑒 and 𝑞 on 𝑓 . For each such a pair there are at
most 𝑂(1) break points of type (v). Point 𝑝 (𝑞) encounters at most 𝑂(1) events
of type (iii) (type (iv)) per edge. So the number of break points of these types
is 𝑂(𝑛) as well.

Note that 𝜙 is a partial function. In particular, 𝜙 is not defined for times 𝑡
such that 𝒯[𝑡] lies in the interior of ℬℬ(𝑢, 𝑣), where 𝑢 and 𝑣 are the first and
last interior vertices in sub-trajectory of length 𝐿 starting at time 𝑡.

Since 𝜙 is piecewise linear, its minimum occurs at a break point. So, to find
a smallest hotspot containing length 𝐿, we compute all break points of 𝜙 and
evaluate 𝜙 at each of them.

We can easily find all break points of 𝜙 by “sweeping” 𝒯 with a sub-trajectory
𝒯[𝑝, 𝑞] of length 𝐿. To quickly find the bounding box and the length of a
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sub-trajectory we represent 𝒯 as a balanced binary search tree. Each leaf node
represents a trajectory edge 𝑒, and stores 𝑒, its bounding box, and its length. An
internal node 𝜈u�,u� represents the sub-trajectory 𝒯[𝑎, 𝑏] from vertex 𝑎 to vertex 𝑏,
and stores ℬℬ(𝑎, 𝑏) and the length of 𝒯[𝑎, 𝑏]. Building this tree takes 𝑂(𝑛 log 𝑛)
time, and allows 𝑂(log 𝑛) time queries. Once we have the bounding box and
the length of 𝒯[𝑢, 𝑣], we can construct and evaluate 𝜙 in constant time. We
have 𝑂(𝑛) events in total, each of which we can handle in 𝑂(log 𝑛) time. Hence,
we can find the global minimum in 𝑂(𝑛 log 𝑛) time. Thus:

▶ Theorem 4.11. Given a threshold 𝐿, we can find a minimum-size hotspot ℋ∗

such that Φ(ℋ∗) ≥ 𝐿 in 𝑂(𝑛 log 𝑛) time.

4.4 Relative Length

4.4.1 Total Length

We now focus on finding a hotspot ℋ∗ with center 𝑐∗ and radius 𝑟∗ that maxi-
mizes the relative trajectory length Ψ(ℋ∗) = Ψ(𝑐∗, 𝑟∗) = Ξ(𝑐∗, 𝑟∗)/2𝑟∗.

Given a hotspot ℋ, a point 𝑝 ∈ ℋ, and a radius 𝑟. Let ℋu�
u� be the hotspot ℋ,

scaled with 𝑝 as origin and such that its radius is 𝑟. Fix a point 𝑝, and consider
Ψ as a function of 𝑟. More formally, let 𝜓u�(𝑟) = Ψ(ℋu�

u�).

▶ Lemma 4.12. 𝜓u� is a piecewise-hyperbolic function. The pieces of 𝜓u� are of the
form 𝑐(1/𝑟) + 𝑑, for 𝑐, 𝑑 ∈ ℝ, and the break points of 𝜓u� correspond to hotspots ℋ
such that: (i) a vertex of 𝒯 lies on a side of ℋ, or (ii) a corner of ℋ lies on an edge of 𝒯.

Proof. It is easy to see that the break points of 𝜓u� are the same as those of Ξ.
We now show that each piece of 𝜓u� is of the form 𝑐(1/𝑟) + 𝑑, with 𝑐, 𝑑 ∈ ℝ.
Consider a piece of 𝜓u�, and let 𝐸 be the set of contributing edges on that piece.
Let 𝐴 ⊆ 𝐸 be the set of edges that are completely contained in any hotspot
corresponding to this piece, and let 𝐵 = 𝐸 ⧵ 𝐴 be the set of remaining edges.
For each edge 𝑒 in 𝐵 the length in ℋu�

u� changes linearly in 𝑟. Let 𝜆u�(𝑟) denote
this length. We then have that

𝜓u�(𝑟) =
Ξ(ℋu�

u�)
2𝑟

=
∑u�∈u� ‖𝑒‖

2𝑟
+

∑u�∈u� 𝜆u�(𝑟)
2𝑟

= 𝑎
1
𝑟

+
̂𝑏𝑟 + 𝑏

𝑟

= (𝑎 + 𝑏)
1
𝑟

+ ̂𝑏,

where 𝑎, 𝑏, and ̂𝑏 are constants. The lemma follows.
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Let 𝕍(ℋ) denote the set of sides of ℋ containing a vertex, and let 𝕧(ℋ) =
|𝕍(ℋ)|. Similarly, let 𝔼(ℋ) denote the set of corners of ℋ that lie on a trajectory
edge, and let 𝕖(ℋ) = |𝔼(ℋ)|.

▶ Lemma 4.13. There is a hotspot ℋ∗ that maximizes Ψ such that 𝕧(ℋ∗) +
𝕖(ℋ∗) ≥ 3.

Proof. Proof by contradiction. Assume that ℋ∗ is a hotspot that maximizes Ψ,
with 𝕧(ℋ∗)+𝕖(ℋ∗) < 3, and that there is no hotspot ℋ with Ψ(ℋ) ≥ Ψ(ℋ∗)
and 𝕧(ℋ) + 𝕖(ℋ) > 𝕧(ℋ∗) + 𝕖(ℋ∗).

We now show that we can scale or translate ℋ∗ without decreasing Ψ and
while keeping 𝕍(ℋ∗) and 𝔼(ℋ∗) the same until (i) there is a new vertex on
a (new) side of ℋ∗ or, (ii) there is an new edge through a new corner of ℋ∗.
This leads to a contradiction, and thus proves the lemma.

Let ℋ′ = ℋ∗, and consider the relative length 𝜓(𝑎) = Ψ(ℋ′) in ℋ′ as a
function of some parameter 𝑎. We choose 𝑎 to be a translation if there are two
opposite sides in 𝕍(ℋ∗), and a scaling otherwise. In both cases we will show
that (1) ℋ∗ corresponds to an interior value of a piece 𝜋 of 𝜓, (2) one of the
endpoints 𝑎′ of 𝜋 has 𝜓(𝑎′) ≥ Ψ(ℋ∗), and (3) the break points of 𝜓 correspond
to hotspots ℋ′ such that (i) there is a vertex on a side of ℋ′ or, (ii) there is an
edge through a corner of ℋ′. It follows that the hotspot ℋ′ corresponding to
𝑎′ has Ψ(ℋ′) ≥ Ψ(ℋ∗) and 𝕧(ℋ′) + 𝕖(ℋ′) > 𝕧(ℋ∗) + 𝕖(ℋ∗), as desired.

Consider the case in which 𝕍(ℋ∗) contains two opposite sides 𝑠1 and 𝑠2.
Assume without loss of generality that 𝑠1 and 𝑠2 are horizontal. We now choose
𝑎 to be the 𝑥-coordinate of the center of ℋ′. We leave the radius of ℋ′ fixed,
so 𝜓 is a piecewise linear function in 𝑎. This proves (2). The break points of 𝜓
correspond to hotspots such that a vertex of 𝒯 lies on a vertical side of ℋ′ or a
trajectory edge intersects a corner of ℋ′. This proves (3). Item (1) follows since
𝕧(ℋ∗) + 𝕖(ℋ∗) < 3.

Consider the case in which 𝕍(ℋ∗) does not contain two opposite sides. Since
𝕧(ℋ∗) + 𝕖(ℋ∗) < 3, there is a point 𝑞 ∈ ℋ∗ such that if we scale ℋ′ = ℋ∗

by a small amount with 𝑞 as origin, the vertices on 𝜕ℋ′ stay on the same side
as in ℋ∗, and the edges through corners of ℋ′ go through the same corners in
ℋ∗. Let 𝑎 be the radius of ℋ′ during this scaling. Thus, 𝜓(𝑎) = 𝜓u�(𝑎). Items
(2) and (3) now directly follow from Lemma 4.12. Item (1) again holds since
𝕧(ℋ∗) + 𝕖(ℋ∗) < 3.

When a corner 𝑐 of ℋ lies in the interior of an edge 𝑒 = 𝑢𝑣, that is, 𝑐 ≠ 𝑢 ≠ 𝑣,
and 𝑒 ∩ ℋ = 𝑐, 𝑒 touches ℋ, see Figure 4.5(a). Let 𝔼nt(ℋ) denote the set of
corners of ℋ that lie on trajectory edges that do not touch ℋ. That is, for
each corner 𝑐 in 𝔼nt(ℋ), the edge through 𝑐 does not touch ℋ. Let 𝕖nt(ℋ) =
|𝔼nt(ℋ)|.
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Figure 4.5: (a) Edge
u� touches the
hotspot, edge u�
does not. (b) The
pieces ǔ� and û�
of Γ incident to a
maximum u�∗.
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▶ Lemma 4.14. There is a hotspot ℋ∗ that maximizes Ψ such that 𝕧(ℋ∗) +
𝕖nt(ℋ∗) ≥ 3.

Proof. It follows from Lemma 4.13 that there is a hotspot ℋ∗ maximizing
Ψ, with 𝕧(ℋ∗) + 𝕖(ℋ∗) ≥ 3. We now show by contradiction that 𝕧(ℋ∗) +
𝕖nt(ℋ∗) ≥ 3.

Let 𝑟∗ be the radius of ℋ∗, and let 𝑒 be an edge that touches ℋ∗ in corner 𝑐.
Hence, 𝑐 ∈ 𝔼nt(ℋ∗). If no such edge, and thus no such corner, exists then we
immediately arrive at a contradiction. If 𝑒 does exist, we will show that this
contradicts the fact that ℋ∗ maximizes Ψ.

There is a point 𝑝 ∈ ℋ∗ such that we can scale ℋ∗ with 𝑝 as origin while
maintaining a total of two objects 𝑜1 ≠ 𝑐 and 𝑜2 ≠ 𝑐 in 𝕍(ℋ∗) and 𝔼(ℋ∗).
Now consider the piecewise hyperbolic function 𝜓u� (Lemma 4.12). Since ℋ∗

is optimal, the value 𝑟∗ is a break point of 𝜓u�. Let [ ̌𝑟, 𝑟∗] and [𝑟∗, ̂𝑟] be the
pieces incident to 𝑟∗, and let ̌𝜓 and ̂𝜓 denote the function 𝜓u� restricted to their
corresponding pieces. See Figure 4.5(b).

Since ℋ∗ maximizes Ψ we have 𝜓(𝑟∗) ≥ 𝜓( ̌𝑟), 𝜓( ̂𝑟). It follows that ̌𝜓(𝑟) =
−𝑎(1/𝑟) + 𝑏, and ̂𝜓(𝑟) = 𝑐(1/𝑟) + 𝑑, for some 𝑎, 𝑐 ≥ 0 and 𝑏, 𝑑 ∈ ℝ. We now
consider the length of edge 𝑒 in the hotspot as a function of 𝑟 on the interval
[𝑟∗, ̂𝑟]. Since this length 𝜆u�(𝑟) is non-negative, we have 𝜆u�(𝑟) = 𝑔𝑟 − ℎ, for some
𝑔, ℎ ≥ 0. This gives us

̂𝜓(𝑟) = ̌𝜓(𝑟) +
𝜆u�(𝑟)

2𝑟
= ̌𝜓(𝑟) −

ℎ
2𝑟

+
𝑔
2

= (−𝑎 −
ℎ
2

)
1
𝑟

+ 𝑏 +
𝑔
2

.

Hence 𝑐 = (−𝑎 − ℎ/2) < 0. Contradiction.

An algorithm to maximize Ψ. By Lemma 4.14 there are three objects, that
is, vertices or edges, bounding an optimal hotspot. Hence, there is a hotspot
maximizing Ψ such that



70 Chapter 4 Finding Hotspots

• 𝜕ℋ∗ contains three vertices on three different sides,
• 𝜕ℋ∗ contains two vertices on different sides and one edge intersects a

corner of ℋ∗,
• a vertex lies in a corner of ℋ∗, and there is either a second vertex on 𝜕ℋ∗

or an edge going through a different corner of ℋ∗,
• two edges intersect in a corner of ℋ∗, and there is either a vertex on 𝜕ℋ∗

or an edge going through a different corner of ℋ∗,
• 𝜕ℋ∗ contains one vertex and two edges intersect distinct corners of ℋ∗,

or
• three edges intersect distinct corners of ℋ∗.

In all cases the edges do not touch ℋ∗.
We now compute a hotspot maximizing Ψ in each of these cases, and then

simply pick a best one. In each case, our global approach is to fix two of the
three objects. This fixes two of the three degrees of freedom. We then express Ξ
as a function of the remaining degree of freedom 𝑎. This function Ξ is piecewise
linear in 𝑎, and will have break points (events) when a third object bounds the
hotspot ℋ. Thus, we can find an optimal solution by evaluating Ξ and Ψ at
each of the break points.

How we find all break points differs per case, but we will show that in
each case we can find the 𝑂(𝑛) break points in linear time. Computing and
maintaining Ξ also takes linear time in total, since each update can be handled
by adding or subtracting a simple linear function that describes the change at
that break point. There are 𝑂(𝑛2) pairs of objects that we can fix, so we can
handle each case in 𝑂(𝑛3) time in total.

We use the following simple data structures throughout the different cases.
We construct two lists ℒu� and ℒu� of all vertices, ℒu� sorted on increasing
𝑥-coordinate, and ℒu� sorted on increasing 𝑦-coordinate. Furthermore, we
explicitly build the arrangement 𝒜 on the supporting lines of the edges of 𝒯.
With this arrangement we can now answer the following queries in 𝑂(𝑛) time:
given a query (half-)line, or ray, ℓ find all trajectory edges intersected by ℓ in
the order in which they are intersected. We do this by simply walking along ℓ
in the arrangement 𝒜. Since the zone of ℓ in 𝒜 has linear complexity, such a
query takes 𝑂(𝑛) time.

Three vertices. There is an optimal hotspot such that three sides contain a
vertex. Two of these sides must be parallel. Assume without loss of generality
that these two sides are contained in the vertical lines ℓu� and ℓu� , and that these
lines are at distance 2𝑟 from each other (see Figure 4.6(a)). These two vertical
lines bound a vertical slab, we now place a square hotspot ℋ with radius 𝑟 at
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Figure 4.6: (a) The three vertices case.
(b) The two vertices, one edge case.
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the bottom of this slab, and shift it upwards. Let 𝑎 be the 𝑦-coordinate of the
top of ℋ, and consider Ξ as a function of 𝑎. Each time a side of ℋ hits a vertex,
or a corner of ℋ hits a trajectory edge, we get a break point.

Two vertices, one edge. Let 𝑢 and 𝑣 be the vertices on 𝜕ℋ∗. When 𝑢 and 𝑣
lie on opposite sides of ℋ∗ we can use the same approach as in the previous
case. When 𝑢 and 𝑣 lie on neighboring sides we use the following approach.
Assume without loss of generality that 𝑢 lies on the bottom side of ℋ∗ and 𝑣 on
the left side of ℋ∗. This means that the bottom left corner 𝑜 of ℋ∗ is uniquely
defined by 𝑢 and 𝑣.

We start with an arbitrarily small empty hotspot ℋ with its bottom left corner
at 𝑜. We now scale ℋ with 𝑜 as origin. Let 𝑎 denote the scaling parameter, and
consider Ξ as a function of 𝑎. The function Ξ combinatorially changes when
any side of ℋ hits a vertex, or any corner of ℋ hits a trajectory edge. We find
these times by querying 𝒜 with a horizontal ray, a vertical ray, and a diagonal
ray starting at 𝑜, and merging their results with ℒu� and ℒu� (see Figure 4.6(b)).

One corner vertex. Let 𝑣 be the vertex of 𝒯 on a corner of ℋ∗. We define
𝑜 = 𝑣, and then handle this case analogous to the previous case.

Two edges through a single corner. Let 𝑒 and 𝑓 be the two edges that intersect
in point 𝑜. Thus, 𝑜 is the corner of ℋ∗. We then again handle this case analogous
to the two vertices, one edge case.

One vertex, two edges. Let 𝑣 be the vertex on 𝜕ℋ∗, and let 𝑒 be the edge
through a corner of ℋ∗. Assume without loss of generality that 𝑣 lies on the
bottom side of ℋ∗. We distinguish two subcases: 𝑒 intersects a bottom corner
of ℋ∗, or 𝑒 intersects a top corner of ℋ∗.
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Figure 4.7: The one vertex, two edges case (a), and the three edges case (b).

In the first case, the horizontal line through 𝑣 intersects 𝑒 in a point 𝑜. We
again consider scaling ℋ with origin 𝑜, so this case is handled analogously to
the case where there were two vertices on 𝜕ℋ∗.

In the second case, 𝑒 intersects ℋ in a top corner 𝑐1. Let 𝑐2 be the other top
corner. All hotspots that have corner 𝑐1 on 𝑒, and 𝑣 on the bottom side, have
their other upper corner, 𝑐2, on a line 𝑚 (see Figure 4.7(a)). We consider these
hotspots and the function Ξ by increasing size 𝑎. We find the break points
as follows. To find all edges that could intersect ℋ in corner 𝑐2, we query 𝒜
with 𝑚, oriented such that the hotspots ℋ get larger along 𝑚. We find the
intersections with other corners, ordered by increasing size 𝑎, by querying 𝒜
with two horizontal half-lines starting at 𝑣. We then merge these three lists
with the sorted lists of vertices to get a list of all break points.

Three edges. Let 𝑒, 𝑓 , and 𝑔 be the edges through corners of ℋ∗, of which
𝑒 and 𝑓 are through opposite corners 𝑐u� and 𝑐u� . Let ℓu� and ℓu� be the lines
containing 𝑒 and 𝑓 , respectively (see Figure 4.7(b)). Consider all hotspots that
have 𝑒 through corner 𝑐u� and 𝑓 through 𝑐u� . The remaining two corners of these
hotspots lie on half-lines 𝑚1 and 𝑚2, starting at the intersection point 𝑝 of ℓu�
and ℓu� .

We now consider Ξ as a function of the size 𝑎 of the hotspots that have 𝑒
through corner 𝑐u� and 𝑓 through corner 𝑐u� . To compute the break points of Ξ,
we query 𝒜 with 𝑚1, 𝑚2, ℓu� and ℓu� . We merge these lists with the sorted lists of
vertices to get all break points, ordered on increasing size 𝑎.

We now conclude:

▶ Theorem 4.15. We can find a hotspot ℋ∗ that maximizes Ψ in 𝑂(𝑛3) time.
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4.4.2 Contiguous Length
We now consider maximizing the function Γ(ℋ) = Φ(ℋ)/𝑤, where 𝑤 = 2𝑟.
Since Φ is piecewise linear in 𝑐 and 𝑟, function Γ is a piecewise function that
is linear in 𝑐 and hyperbolic in 𝑟. We again use 𝒯∗ = 𝒯[𝑝∗, 𝑞∗] to denote a
maximal length sub-trajectory contained in an optimal hotspot ℋ∗.

As before, we observe that unless 𝑝∗ is the starting point of 𝒯, it lies on the
boundary of ℋ∗. We again handle the case 𝑝∗ = 𝒯(0) separately. This is easy
to do in linear time by computing a function 𝑊 expressing the minimum width
of a hotspot containing 𝒯[0, 𝑞∗] as a function of the ending time 𝑞∗

u� . We can
then easily compute (the maximum of) Γ using 𝑊. In the remainder of this
section we will therefore assume that 𝑝∗ lies on the boundary of ℋ∗.

▶ Lemma 4.16. There is a hotspot ℋ∗ maximizing Γ, with sides 𝑠0, .., 𝑠3 in clockwise
order such that:

• There is a vertex 𝑣 ∈ 𝒯∗ on a side 𝑠(u�+1) mod 4, and
• 𝒯[𝑝∗, 𝑣] or 𝒯[𝑣, 𝑞∗] intersects side 𝑠u�.

Proof. Let 𝑤∗ denote the width of a hotspot maximizing Γ. By Lemma 4.7,
applied to hotspots of width 𝑤∗, there is a hotspot ℋ∗ (of width 𝑤∗) that
maximizes Φ and has a vertex 𝑣 ∈ 𝒯∗ on its boundary. It follows that ℋ∗ also
maximizes Γ.

Let the side on which 𝑣 lies be 𝑠(u�+1) mod 4, and assume without loss of
generality that 𝑠(u�+1) mod 4 is the top side of ℋ∗. Clearly, we can now just shift
ℋ∗ to the right, while keeping 𝒯∗ inside it, until 𝒯∗ intersects the left side 𝑠u�.
Since 𝑣 ∈ 𝒯∗ it thus also holds that 𝒯[𝑝∗, 𝑣] or 𝒯[𝑣, 𝑞∗] (or both) intersect side
𝑠u�.

▶ Corollary 4.17. There is a vertex 𝑣 ∈ 𝒯, and a hotspot ℋ∗ that maximizes Γ such
that:

• 𝑣 lies on side 𝑠(u�+1) mod 4 of ℋ∗,
• 𝑝∗

u� ∈ {𝑣u� − 𝑤∗, 𝑣u�, 𝑣u� + 𝑤∗} or 𝑝∗
u� ∈ {𝑣u� − 𝑤∗, 𝑣u�, 𝑣u� + 𝑤∗}, and

• 𝒯[𝑝∗, 𝑣] or 𝒯[𝑣, 𝑞∗] intersects side 𝑠u�.

From Corollary 4.17 it follows that we can use a similar approach as in
Section 4.3.1: we fix vertex 𝑣, a side 𝑠(u�+1) mod 4 of ℋ∗, which part of 𝒯 intersects
𝑠u� (either the part before or after 𝑣), and one of the six constraints on 𝑝∗, and
we compute Γ and its maximum, assuming that there is an optimal hotspot
with that configuration. To compute and find Γu� = Γ for a given configuration
u�, we express the maximal contiguous length as a function of 𝑤. This also
gives us the function Γu�(𝑤) = Φu�(𝑤/2)/𝑤. Since Φu� is piecewise linear, Γu� is
piecewise hyperbolic. We can thus find the maximum of Γu� by inspecting each
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Figure 4.8: Vertex u� together with a
width u� define the functions u�(u�),
ℓ(u�), and u�(u�). In turn, these func-
tions can be used to define a hotspot
ℋ(u�) and the length therein. The
figure illustrates these functions for
two parameter values û� and ǔ�.

piece. We will show that we can do this in 𝑂(𝑛) time. Since there are 𝑂(𝑛)
configurations, this leads to an 𝑂(𝑛2) time algorithm.

Consider a configuration u� in which 𝑣 lies on the top side of an optimal
hotspot ℋ∗, where 𝑝∗ lies on a horizontal side of ℋ∗ (hence 𝑝∗

u� ∈ {𝑣u� − 𝑤∗, 𝑣u�}),
and 𝒯[𝑝∗, 𝑣] intersects the left side of ℋ∗. All other cases can be handled
analogously. Let 𝑆(𝑤) = [𝑣u� − 𝑤, 𝑣u�] denote the horizontal slab of width 𝑤 and
with 𝑣 on it’s top boundary, let 𝑝(𝑤) be the earliest point on 𝒯, that is, the point
with the earliest associated time, such that 𝒯[𝑝(𝑤), 𝑣] is completely contained
in 𝑆(𝑤), and let ℓ(𝑤) be the leftmost point in 𝒯[𝑝(𝑤), 𝑣]. See Figure 4.8.

We now observe that when vertex 𝑣 together with a width 𝑤 uniquely define
a hotspot ℋ(𝑤): ℋ(𝑤) has width 𝑤, ℓ(𝑤) on its left side, and 𝑣 on its top
side. By construction, 𝒯 enters ℋ(𝑤) through a horizontal side, namely in
point 𝑝(𝑤). It follows that ℋ∗ = ℋ(𝑤∗), for the optimal width 𝑤∗. Let 𝑞(𝑤)
be the latest point on 𝒯 such that 𝒯[𝑝(𝑤), 𝑞(𝑤)] ⊂ ℋ(𝑤). It follows that
Φu�(𝑤) = ‖𝒯[𝑝(𝑤), 𝑞(𝑤)]‖, and Γu�(𝑤) = Φu�(𝑤)/𝑤. Note that if ℓ(𝑤)u� + 𝑤 < 𝑣u�
then ℋ(𝑤) does not exist, so ℋ, is a partial function. Therefore 𝑞, Φu� , and Γu�
are also partial functions.

It is easy to see that 𝑝 is piecewise linear in 𝑤, and that its break points
correspond to vertices of 𝒯. Hence 𝑝 consists of at most 𝑂(𝑛) pieces. It then
follows that ℓ, 𝑞, and Φu� are all also piecewise linear, and consist of 𝑂(𝑛) pieces.
This, in turn, implies that Γu� is piecewise hyperbolic and consists of 𝑂(𝑛) pieces.
Next, we describe how construct Γu� in linear time.

Computing Γu� for a given configuration. We first construct 𝑝. We start with
𝑤 = 0 and increase 𝑤 while maintaining 𝑝. Increasing 𝑤 corresponds to walking
along the trajectory, starting at 𝑤(0) = 𝑣, and heading towards the starting point
of 𝒯. When we encounter a new edge 𝑒 oriented upwards (and thus downwards
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with respect to our walk) 𝑝(𝑤) is a simple linear function depending on 𝑒. When
we encounter an vertex of an edge 𝑒 oriented downwards (like at vertex 𝑢 in
Figure 4.8), 𝑝(𝑤) is either 𝑢, or the last point before 𝑢 where 𝑝(𝑤)u� = 𝑢u�. Hence,
we can simply walk along 𝒯 until we find it, we reach the global starting point
of 𝒯, or we reach a vertex with a 𝑦-coordinate greater than 𝑣u�. In the latter
two cases we set 𝑝(𝑤) = 𝑢, and 𝑝(𝑤′) = ⊥ (undefined) for any 𝑤′ > 𝑤, and we
are done. In the former case, we set 𝑝(𝑤) to be the point found, and continue
increasing 𝑤 (since we know that this point lies on an upward oriented edge).

The procedure above takes 𝑂(𝑛) time. Furthermore, it is easy to extend it
to maintain ℓ as well. A very similar approach can then be used to compute 𝑞.
Since 𝑞 is also monotone in 𝑤, this also takes linear time. When we have the
functions 𝑝 and 𝑞, Φu�, Γu�, and the maximum of Γu� can be computed in 𝑂(𝑛)
time. We use this procedure for all 𝑂(𝑛) configurations. Thus:

▶ Theorem 4.18. We can find a hotspot ℋ∗ that maximizes Γ in 𝑂(𝑛2) time.

4.5 Extensions

In this section we briefly discuss various extensions to our algorithms, in
particular, multiple entities and differently shaped hotspots.

Multiple entities. Suppose that instead of one moving entity with one trajec-
tory 𝒯, we have many entities, and thus many trajectories 𝒯1, .., 𝒯u�. Can we
still find a hotspot ℋ that maximizes the length (over all trajectories) inside it,
or minimizes the size required to get at least a certain length? Our algorithms
simply treat trajectory 𝒯 as a set of line segments. So they are immediately
applicable to multiple trajectories as well. Note that for the contiguous-length
versions we now maximize over all input trajectories as well.

Convex polygonal hotspots of a given shape. The algorithms that use the
total length (the ones from Section 4.2), are still applicable when the hotspot
is a convex polygon of a given shape. If the polygon has 𝑘 vertices, each
trajectory edge produces 𝑂(𝑘) line segments in subdivision 𝒮. Thus, 𝒮 may
have a total complexity of 𝑂(𝑘2𝑛2). We then solve the fixed radius version (for
an appropriate definition of radius) in 𝑂(𝑘2𝑛2) time. Similarly, the fixed length
version takes 𝑂(𝑘2𝑛2 log2(𝑘𝑛)) time.

If we consider the relative total length inside ℋ, Lemmas 4.13 and 4.14 still
hold, even if ℋ is a convex polygon of complexity 𝑘 of a given shape. This
means that there are still three objects “bounding” ℋ∗; one for each parameter
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specifying the position of ℋ∗. So, the global approach of our algorithm is still
applicable. Which, and how many, ray shooting queries we have to perform to
obtain the break points depends on the shape of the hotspot.

For the algorithms that use the contiguous length (time) it is not immediately
clear how to extend them to work for arbitrarily, but fixed, shaped polygons.

Other types of hotspots. When the hotspot has curved boundaries, we can
no longer maximize our functions Ξ and Φ (and as a result Ψ and Γ), as is
explained in Section 4.1. Hence, our algorithms do not easily extend to these
cases. When the hotspot ℋ is not convex, the intersection of a single edge with
ℋ may consist of several line segments. This will increase the time required
to evaluate the functions. Furthermore, this may lead to a large increase of
complexity in the parameter space. When the shape of the hotspot is not
predefined it is not clear how define the problem as a maximization problem.
Hence, in this case we cannot directly apply our algorithms either.

Computing 𝑐-packedness. We note that our measure Ψ of relative length is
closely related to the “𝑐-packedness” of a curve. A curve u� in ℝ2 is 𝑐-packed if
and only if for any point 𝑝 ∈ ℝ2 and any radius 𝑟 the total length in the disk
of radius 𝑟 centered at 𝑝 is at most 𝑐𝑟 [43]. If we use a square instead of a disk,
then u� is 𝑐-packed if and only if Ψ(𝑟)/2 ≤ 𝑐. Hence, for this modified notion of
𝑐-packed curves, our algorithm from Section 4.4 can compute the smallest 𝑐 for
which a curve is 𝑐-packed in 𝑂(𝑛3) time. For the original definition of 𝑐-packed
we need a round hotspot, and thus run into the same issues as described above.

4.6 Concluding Remarks

Hotspots are small regions where a moving entity spends a significant amount
of time. We presented algorithms to locate optimal hotspots from trajectory
data based on path length rather than time, but versions based on time require
essentially the same algorithms and the same efficiency is obtained. Five
variations of the problem were considered. When all visits to the hotspot
count our algorithms take roughly quadratic time: 𝑂(𝑛2) time if we want to
maximize the time in a fixed-size square hotspot, and 𝑂(𝑛2 log2 𝑛) time if we
want to minimize the size of the hotspot for a fixed time the entity spends inside.
Maximizing the relative time inside, compared to the size of the hotspot, takes
𝑂(𝑛3) time. If we are interested only in the longest contiguous visit, we can
improve on these running times. Solving the fixed length and fixed radius
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versions takes only 𝑂(𝑛 log 𝑛) time, and computing a hotspot that maximizes
the relative contiguous length takes 𝑂(𝑛2) time.

There are various heuristic extensions possible to let the algorithm with
cubic runtime be much faster in practice. For all algorithms we can apply tra-
jectory simplification to improve the efficiency if needed, because our methods
can handle irregularly sampled data without problems (unlike point-based
methods).

Our algorithms directly extend to multiple entities. However, when multiple
entities are considered several other variations of the problem exist. For exam-
ple, find a smallest hotspot ℋ such that all entities spend at least 𝐿 time in ℋ.
We can again consider the total time, the longest contiguous time, and we can
even vary whether or not the entities need to be present at the same time(s).
Note that the contiguous time version in which all entities need to be present at
the same time is very related to the meet pattern as defined by Gudmundsson
and van Kreveld [60]. We can also consider only the longest visit to the hotspot
for each entity, and try to maximize the sum of those durations over all entities.
All these variations are interesting options for future work. Additionally, we
can consider computing hotspots for entities moving in ℝu�, with 𝑑 ≥ 3, or
finding a set of hotspots.
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The Trajectory
Grouping Structure

Chapter5
In this chapter we present a way to characterize and compute groups in a set

of trajectories of moving entities. A group is a sufficiently large set of entities
that travel together for a sufficiently long time (we give a more formal definition
later). Groups may start, end, split and merge with other groups. Apart from
the question what the current groups are, we also want to know which splits
and merges led to the current groups, when they happened, and which groups
they involved. We wish to capture this group change information in a model
that we call the trajectory grouping structure. We define the trajectory grouping
structure using the Reeb graph, a concept from topology [47].

The description above suggests that three parameters are needed to define
groups: (i) a spatial parameter for the distance between entities; (ii) a temporal
parameter for the duration of a group; (iii) a count for the number of entities
in a group. We will design our grouping structure definition to incorporate
these parameters so that we can study grouping at different scales. We also
discuss robustness of the grouping structure in the following sense. If an entity
𝑎 leaves a group 𝐺 and almost immediately returns, we would like to ignore
the small time during which 𝑎 and 𝐺 were separate, and just consider 𝐺 ∪ {𝑎}
as one group. This requires one additional parameter that captures how short
any interruption in a group may last to be ignored.

A definition for a group. Let ℰ be a set of entities for which we have the
trajectories. The 𝜀-disc of an entity 𝑎 (at time 𝑡) is a disc of radius 𝜀 centered at 𝑎
at time 𝑡. Two entities are directly connected at time 𝑡 if their 𝜀-discs overlap. Two
entities 𝑎 and 𝑏 are 𝜀-connected at time 𝑡 if there is a sequence 𝑎 = 𝑎0, .., 𝑎u� = 𝑏 of
entities such that for all 𝑖, 𝑎u� and 𝑎u�+1 are directly connected.

A subset 𝑆 ⊆ ℰ of entities is 𝜀-connected at time 𝑡 if all entities in 𝑆 are
pairwise 𝜀-connected at time 𝑡. This means that the union of the 𝜀-discs of
entities in 𝑆 forms a single connected region. The set 𝑆 forms a component at time
𝑡 if and only if 𝑆 is 𝜀-connected, and 𝑆 is maximal with respect to this property.
See Figure 5.1(a). The set of components u�(𝑡) at time 𝑡 forms a partition of the
entities in ℰ at time 𝑡.
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Figure 5.1: (a) The entities and their u�-discs at a particular time u�. The entities form two maximal
u�-connected sets, or components, at time u�; a red component and a blue component. (b) For u� = 2
and u�2 − u�1 ≥ u� > u�4 − u�3 there are four maximal groups: {u�1, u�2}, {u�3, u�4}, {u�5, u�6}, and {u�1, .., u�4}.

Let the spatial parameter of a group be 𝜀, the temporal parameter 𝛿, and the
size parameter 𝑚. A set 𝐺 of 𝑘 entities forms a group during time interval 𝐼 if
and only if the following three conditions hold: (i) 𝐺 contains at least 𝑚 entities,
so 𝑘 ≥ 𝑚, (ii) the interval 𝐼 has length at least 𝛿, and (iii) at all times 𝑡 ∈ 𝐼, there
is a component 𝐶 ∈ u�(𝑡) such that 𝐺 ⊆ 𝐶.

We denote the interval 𝐼 = [𝑡u�, 𝑡u�] of group 𝐺 with 𝐼u�. Group 𝐻 covers group
𝐺 if 𝐺 ⊆ 𝐻 and 𝐼u� ⊆ 𝐼u�. If there are no groups that cover 𝐺, we say 𝐺 is
maximal (on 𝐼u�). In Figure 5.1(b), groups {𝑎1, 𝑎2}, ̃𝐺 = {𝑎3, 𝑎4}, ̂𝐺 = {𝑎5, 𝑎6}, and
𝐺 = {𝑎1, .., 𝑎4} are maximal: ̃𝐺 and ̂𝐺 on [𝑡0, 𝑡5], 𝐺 on [𝑡1, 𝑡2]. Group {𝑎1, 𝑎3} is
covered by 𝐺 and hence not maximal.

Note that entities can be in multiple maximal groups at the same time. For
example, entities {𝑏1, 𝑏2, 𝑏3} can travel together for a while, then 𝑏4, 𝑏5 may be-
come 𝜀-connected, and shortly thereafter 𝑏1, 𝑏4, 𝑏5 separate and travel together
for a while. Then 𝑏1 may be in two otherwise disjoint maximal groups for a
short time. An entity can also be in two maximal groups where one is a subset
of the other. In that case the group with fewer entities must last longer. That
an entity is in more groups simultaneously may seem counterintuitive at first,
but it is necessary to capture all grouping information. We will show that the
total number of maximal groups is 𝑂(𝜏𝑛3), where 𝑛 is the number of entities
in ℰ and 𝜏 is the number of edges of each input trajectory. This bound is tight
in the worst case.

Our maximal group definition uses three parameters, which all allow a more
global view of the grouping structure. In particular, we observe that there is
monotonicity in the group size and the duration: If 𝐺 is a group during interval 𝐼,
and we decrease the minimum required group size 𝑚 or decrease the minimum
required duration 𝛿, then 𝐺 is still a group on time interval 𝐼. Also, if 𝐺 is a
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maximal group on 𝐼, then it is also a maximal group for a smaller 𝑚 or smaller
𝛿. For the spatial parameter 𝜀 we observe monotonicity in a slightly different
manner: if 𝐺 is a group for a given 𝜀, then for a larger value of 𝜀 there exists a
group 𝐺′ ⊇ 𝐺. The monotonicity property is important when we want to have
a more detailed view of the data: we do not lose maximal groups in a more
detailed view. The group may, however, be extended in size and/or duration.

We capture the grouping structure using a Reeb graph of the 𝜀-connected
components together with the set of all maximal groups. Parts of the Reeb
graph that do not support a maximal group can be omitted. The grouping
structure can help us in answering various questions. For example:

• What is the largest/longest maximal group at time 𝑡?
• How many entities are currently (not) in any maximal group?
• What is the first maximal group that starts/ends after time 𝑡?
• What is the total time that an entity was part of any maximal group?
• Which entity has shared maximal groups with the most other entities?

Furthermore, the grouping structure can be used to partition the trajectories in
independent data sets, to visualize grouping aspects of the trajectories, and to
compare grouping across different data sets.

Results and organization. We discuss how to represent the grouping struc-
ture using the Reeb graph in Section 5.1. We prove that for 𝑛 entities, each
traveling along a trajectory of 𝜏 edges, the Reeb graph has size at most 𝑂(𝜏𝑛2),
and that there are at most 𝑂(𝜏𝑛3) maximal groups. Both of these bounds are
tight in the worst case. We present algorithms to compute the Reeb graph and
the trajectory grouping structure and all maximal groups in Section 5.2. Com-
puting the Reeb graph takes 𝑂(𝜏𝑛2 log 𝑛) time, and computing all maximal
groups takes 𝑂(𝜏𝑛3 + 𝑁) time, where 𝑁 is the total output size. The maximal
group definition given above is not yet robust, in Section 5.3 we incorporate
robustness and extend our algorithms to this case. In Section 5.4 we evaluate
our methods on synthetic and real-world data.

5.1 Representing the Grouping Structure
Let ℰ be a set of 𝑛 entities, where each entity travels along a path of 𝜏 edges.
To compute the grouping structure we consider a manifold ℳ in ℝ3, where
the 𝑧-axis corresponds to time. The manifold ℳ is the union of 𝑛 “tubes” (see
Figure 5.2(a)). Each tube consists of 𝜏 skewed cylinders with horizontal radius
𝜀 that we obtain by tracing the 𝜀-disc of an entity 𝑥 over its trajectory.
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Figure 5.2: (a) The manifold ℳ for the entities ℰ = {u�1, .., u�7}. At time ̌u� the component {u�4, u�5} merges
with {u�6, u�7}, and at time ̂u� the group {u�1, u�2, u�3} splits. (b) The Reeb graph ℛ corresponding to ℳ.
The colored squares indicate which entities are in the component associated with each edge of ℛ.
The merge of {u�4, u�5} and {u�6, u�7} yields a merge vertex u� at time u�u� = ̌u�, and the split of {u�1, u�2, u�3}
yields a split vertex u� at time u�u� = ̂u�.

Let 𝐻u� denote the horizontal plane at height 𝑡, then the set ℳ ∩ 𝐻u� is the
level set of 𝑡. The connected components in the level set of 𝑡 correspond to the
components (maximal sets of 𝜀-connected entities) at time 𝑡. To simplify the
presentation we will assume that all trajectories have their known positions at
the same times 𝑡0, .., 𝑡u� and that no three entities become 𝜀-(dis)connected at the
same time, but our theory can easily be extended to remove these assumptions.

5.1.1 The Reeb Graph
We start out with a possibly disconnected solid that is the union of a collection
of tube-like regions: a 3-manifold with boundary. Note that this manifold
is not explicitly defined. We are interested in horizontal cross-sections, and
the evolution of the connected components of these cross-sections defines
the Reeb graph. Note that this is different from the usual Reeb graph that is
obtained from the 2-manifold that is the boundary of our 3-manifold, using
the level sets of the height function (the function whose level sets we follow is
the height function above a horizontal plane below the manifold), see [47] for
a background on these topics.

To describe how the components change over time, we consider the Reeb
graph ℛ of ℳ (Figure 5.2(b)). The Reeb graph has a vertex 𝑣 at every time 𝑡u�
where the components change. The vertex times are usually not at any of the
given times 𝑡0, .., 𝑡u� , but in between two consecutive time steps. The vertices
of the Reeb graph can be classified in four groups. There is a start vertex for
every component at 𝑡0 and an end vertex at 𝑡u� . A start vertex has in-degree
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Figure 5.3: Every pair of entities u�u� and u�ℓ are at the
same point at time u�u� + u� + ℓ. This yields Ω(u�2)
vertices in the interval [u�u�, u�u�+1].
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zero and out-degree one, and an end vertex has in-degree one and out-degree
zero. The remaining vertices are either merge vertices or split vertices. Since we
assume that no three entities become 𝜀-(dis)connected at exactly the same time
there are no simultaneous splits and merges. This means merge vertices have
in-degree two and out-degree one, and split vertices have in-degree one and
out-degree two. A directed edge 𝑒 = (𝑢, 𝑣) connecting vertices 𝑢 and 𝑣, with
𝑡u� < 𝑡u�, corresponds to a set 𝐶u� of entities that form a component at any time
𝑡 ∈ 𝐼u� = [𝑡u�, 𝑡u�]. The Reeb graph is this directed graph. Note that the Reeb
graph depends on the spatial parameter 𝜀, but not on the other two parameters
of maximal groups.

▶ Lemma 5.1. The Reeb graph ℛ for a set ℰ of 𝑛 entities, each of which travels along
a trajectory of 𝜏 edges, can have Ω(𝜏𝑛2) vertices and Ω(𝜏𝑛2) edges.

Proof. Assume without loss of generality that 𝑛 is even. We construct 𝑛 tra-
jectory edges on which the entities travel in between two consecutive time
stamps, say 𝑡u� and 𝑡u�+1, such that the Reeb graph for 𝜀 = 0 has Ω(𝑛2) vertices 𝑣
with 𝑡u� ∈ [𝑡u�, 𝑡u�+1]. We use this construction in between all times 𝑡2u� and 𝑡2u�+1,
and move the entities back to their starting position in between 𝑡2u�+1 and 𝑡2u�+2.
Therefore, the total number of vertices is Ω(𝜏𝑛2). Since each vertex has degree
one or three it follows that the number of edges is also Ω(𝜏𝑛2).

Let ℰ = 𝑅 ∪ 𝐷, with 𝑅 = 𝑟1, .., 𝑟u�/2 and 𝐷 = 𝑑1, .., 𝑑u�−u�/2. At the start (time
𝑡u�) all entities start at the line 𝑦 = 𝑥. In particular, we place 𝑟u� on (−𝑗, −𝑗) and 𝑑ℓ
on (ℓ, ℓ). All entities move with speed one. The entities in 𝑅 move to the right,
and the entities in 𝐷 move downwards (see Figure 5.3). It follows that each
entity 𝑟u� and 𝑑ℓ are both at the same point at time 𝑡u� + 𝑗 + ℓ. Hence, we get a
vertex in the Reeb graph. There are Ω(𝑛2) such intersections, and thus Ω(𝑛2)
vertices. The lemma follows.
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t1t1t0 t2 t3 t4

{3}
{3, 4}

{1..4}
{1..8}

1
2
3
4
5
6
7
8

1, 3, 5, 7
2, 4, 6, 8v

{1, 3}, {1, 3, 5, 7}

Figure 5.4: The maximal groups contain-
ing entity 3 (red). Vertex u� creates
six new groups, including {1, 3} and
{1, 3, 5, 7}.

▶ Theorem 5.2. Given a set ℰ of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges, the Reeb graph ℛ has 𝑂(𝜏𝑛2) vertices and edges. This bound is
tight in the worst case.

Proof. Lemma 5.1 gives a simple construction that shows that the Reeb graph
may have Ω(𝜏𝑛2) vertices and edges. For the upper bound, consider a trajectory
edge (𝑣u�, 𝑣u�+1) of (the trajectory of) entity 𝑎 ∈ ℰ. During interval [𝑡u�, 𝑡u�+1], the
distance between 𝑎 and any other entity 𝑏 ∈ ℰ is a convex (hyperbolic) function
in 𝑡, so 𝑏 is directly connected to 𝑎 during at most one interval 𝐼 ⊆ [𝑡u�, 𝑡u�+1].
This interval yields at most two vertices in ℛ. The trajectory of 𝑎 consists of 𝜏
edges, hence a pair 𝑎, 𝑏 produces 𝑂(𝜏) vertices in ℛ. This gives a total of 𝑂(𝜏𝑛2)
vertices. Each vertex has constant degree, so there are 𝑂(𝜏𝑛2) edges.

▶ Remark 5.3. For any constant 𝑑, the distance between two entities 𝑎 and 𝑏,
each moving along a line in ℝu�, is a convex (hyperbolic) function. Hence, the
above result also holds for entities moving in ℝu�, with 𝑑 > 2.

The trajectory grouping structure. The trajectories of entities are associated
with the edges of the Reeb graph in a natural way. Each entity follows a directed
path in the Reeb graph from a start vertex to an end vertex. Similarly, (maximal)
groups follow a directed path from a start or merge vertex to a split or end
vertex. If 𝑚 > 0 or 𝛿 > 0, there may be edges in the Reeb graph with which no
group is associated. These edges do not contribute to the grouping structure,
so we can discard them. The remainder of the Reeb graph we call the reduced
Reeb graph, which, together with all maximal groups associated with its edges,
forms the trajectory grouping structure.

5.1.2 Bounding the Number of Maximal Groups
To bound the total number of maximal groups, we study the case where 𝑚 = 1
and 𝛿 = 0, because larger values can only reduce the number of maximal groups.
It may seem as if each vertex in the Reeb graph simply creates as many maximal
groups as it has outgoing edges. However, consider for example Figure 5.4.
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Figure 5.5: An illustration of the lower bound construction at time u�2 in round three. The black discs
correspond to the stationary entities in u�. The red discs correspond the entities in u�.

Split vertex 𝑣 creates not only the maximal groups {1, 3, 5, 7} and {2, 4, 6, 8},
but also {1, 3}, {5, 7}, {2, 4}, and {6, 8}. These last four groups are all maximal
on [𝑡2, 𝑡], for 𝑡 > 𝑡4. Notice that all six newly discovered groups start strictly
before 𝑡u�, but only at 𝑡u� do we realize that these groups are maximal, which is
the meaning that should be understood with “creating maximal groups”. This
example can be extended to arbitrary size. Hence a vertex 𝑣 may create many
new maximal groups, some of which start before 𝑡u�. We continue to show that
we may obtain Ω(𝜏𝑛3) maximal groups, and that it cannot get worse than that,
that is, the number of maximal groups is at most 𝑂(𝜏𝑛3) as well.

▶ Lemma 5.4. For a set ℰ of 𝑛 entities, in which each entity travels along a trajectory
of 𝜏 edges, there can be Ω(𝜏𝑛3) maximal groups, each of size Ω(𝑛).

Proof. Similar to Lemma 5.1 we construct 𝑛 trajectory edges on which the
entities travel in between 𝑡u� and 𝑡u�+1, and repeat this construction in Ω(𝜏)
time intervals. Our construction yields Ω(𝑛3) maximal groups 𝐺 with 𝐼u� ⊆
[𝑡u�, 𝑡u�+1], resulting in Ω(𝜏𝑛3) maximal groups overall as claimed.

For ease of notation we assume (without loss of generality) that 𝑛 is divisible
by thirteen, and we write 𝑎 to denote both the entity 𝑎 and the 𝜀-disc of entity
𝑎. We partition our set of entities ℰ into two sets 𝑆 and 𝐷 of sizes 12u�

13 and u�
13 ,

respectively. We first construct 𝑆, whose entities are stationary. We place 8u�
13

entities from 𝑆 on the line 𝑦 = 0, with a distance 𝑟, 𝜀 < 𝑟 < 2𝜀, in between two
consecutive entities. On every fifth stationary entity 𝑠u� we build a tower 𝑇u�, that
is, we place two more stationary entities vertically above 𝑠u�. We place them
such that the distance between two consecutive entities is 𝑟. See Figure 5.5.
Note that 𝑆 contains 2u�

13 towers, and that all entities in 𝑆 are 𝜀-connected.
The remaining entities 𝐷 will move on a horizontal line 𝑦 = 3𝑟. At time

𝑡u�, the discs 𝐷 = {𝑑1, .., 𝑑u�/13}, ordered from right to left, all lie to the left of
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G11
G12
G13
G14

G22
G23
G24

j1 j2 j3 j4 `1 `2 `3 `4

....

Figure 5.6: The time intervals on which
u�u�u� is a maximal group in a given
round.

the discs in 𝑆. They all move to the right with the same speed. The distance
between two consecutive entities is 5𝑟 + 1

u� .
The sequence of events in interval [𝑡u�, 𝑡u�+1] can then be partitioned into

rounds. Round 𝑧 starts with 𝑘 merge events 𝑗1, .., 𝑗u�, followed by a series of 𝑘 split
events ℓ1, .., ℓu�. More specifically, at time ℓu�, entity 𝑑u� becomes directly connected
with (the topmost entity of) tower 𝑇1+u�−u�, and at time ℓu� entity 𝑑u� stops being
directly connected with 𝑇1+u�−u�.

Merge 𝑗u� will start a new maximal group 𝐺1u�, where 𝐺u�u� = 𝑆 ∪ ⋃u�
ℎ=u� 𝑑ℎ.

Hence after the 𝑘 merges, 𝑘 maximal groups have started. In the subsequent
series of split events, the discs 𝑑1, .., 𝑑u� stop being directly connected with
their corresponding tower. When 𝑑u� leaves, the sets of entities 𝐺u�u�, .., 𝐺u�u� end
as maximal groups. However, when 𝑑u� leaves 𝐺u�ℎ, it creates 𝐺(u�+1)ℎ as a new
maximal group that started on 𝑗u�+1 (see Figure 5.6). This means ℓu� creates 𝑘 − 𝑖
new maximal groups. Hence, round 𝑧 creates a total of ∑u�

u�=1(𝑘 − 𝑖) = Ω(𝑘2)
maximal groups.

We now show that, for any 𝑚 ≤ 12u�
13 and any 𝛿, this construction yields Ω(𝑛3)

maximal groups. Since we can choose the speed of the discs in 𝐷, we can
choose it such that all groups have a minimum duration of at least 𝛿. Now
consider the rounds u�

13 , .., 2u�
13 . In each of these u�

13 rounds we have 𝑘 = u�
13 .

Hence, each round creates Ω(𝑛2) new maximal groups. This yields a total of
Ω(𝑛3) maximal groups. Since each group contains 𝑆, its size is at least 12u�

13 .

▶ Theorem 5.5. Let ℰ be a set of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges. There are at most 𝑂(𝜏𝑛3) maximal groups, and this is tight in
the worst case.

Proof. Lemma 5.4 gives a construction that shows that there may be Ω(𝜏𝑛3)
maximal groups.

We proceed with the upper bound. Every maximal group starts either at
a start vertex, or a merge vertex. We will show that the number of maximal
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Figure 5.7: DAG ℛ′
u� (red) as a

subgraph of ℛ (black) (a), and
the tree u�u� obtained by unfold-
ing ℛ′

u� (b).

S

T

(a) (b)

v v

groups starting at a start or merge vertex is 𝑂(𝑛). Since there are 𝑂(𝜏𝑛2) start
and merge vertices the lemma follows. We will discuss only the merge vertex
case; the proof for a start vertex is the same.

Let 𝑣 be a merge vertex, let 𝑆 ⊂ ℰ and 𝑇 ⊂ ℰ be the components that merge
at 𝑣, and let 𝑝u� denote the path of entity 𝑎 ∈ 𝑆 ∪ 𝑇 through ℛ, starting at 𝑣.
The union over all 𝑎 of these paths 𝑝u� forms a directed acyclic graph (DAG) ℛ′

u�,
which is a subgraph of ℛ (see Figure 5.7 (a)). Consider “unraveling” ℛ′

u� into a
tree 𝒯u� as follows. If 𝑝u� and 𝑝u� split in some vertex 𝑢 and merge again in vertex
𝑤, with 𝑡u� > 𝑡u� we duplicate the subpath starting at 𝑤. We duplicate these
subpaths by decreasing order of time 𝑡u�. This yields a tree 𝒯u� with root 𝑣 and
at most |𝑆| + |𝑇| ≤ 𝑛 leaves. Furthermore, all nodes in 𝒯u� have degree at most
three (see Figure 5.7 (b)).

Since all maximal groups end at either a split or an end vertex, all maximal
groups 𝐺1, .., 𝐺u� that start at 𝑣 can now be represented by subpaths in 𝒯u�
starting at the root. The path corresponding to a maximal group 𝐺 ends at the
first node where two entities 𝑎, 𝑏 ∈ 𝐺 split, or at a leaf if no such node exists.
Clearly, paths 𝑝u� and 𝑝u� can split only at a degree three node. Since 𝒯u� has at
most 𝑛 leaves it follows there are at most 𝑂(𝑛) degree three nodes.

Finally, we show that there is at most one maximal group that ends at a given
leaf or degree three node of 𝒯u�. Assume by contradiction that 𝐺u� and 𝐺u�, with
𝑖 ≠ 𝑗, both end at node 𝑢. Both maximal groups share the same path from the
root of 𝒯u� to 𝑢, so all entities in 𝐺u� and 𝐺u� are in the same component at all
times 𝑡 ∈ 𝐼 = [𝑡u�, 𝑡u�]. Hence 𝐺u� ∪𝐺u� is a maximal group on 𝐼, contradicting that
𝐺u� and 𝐺u� were maximal. We conclude that the number of maximal groups
𝑘 that start at 𝑣 is at most the number of leaves plus the number of degree
three nodes in 𝒯u�. Hence 𝑘 = 𝑂(𝑛). Summing over all 𝑂(𝜏𝑛2) start and merge
vertices gives 𝑂(𝜏𝑛3) maximal groups in total.

▶ Remark 5.6. It is easy to see that the proof of Theorem 5.5 actually gives us a
bound of 𝑂(|ℛ|𝑛), where |ℛ| denotes the complexity of the Reeb graph.
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5.2 Computing the Grouping Structure
To compute the grouping structure we need to compute the reduced Reeb graph
and the maximal groups. We now show how to do this efficiently. Removing
the edges of the Reeb graph that are not used is an easy post-processing step
which we do not discuss further.

5.2.1 Computing the Reeb Graph
We can compute the Reeb graph ℛ as follows. We first compute all times where
two entities 𝑎 and 𝑏 are at distance 2𝜀 from each other. We distinguish two
types of events, connect events at which 𝑎 and 𝑏 become directly connected, and
disconnect events at which 𝑎 and 𝑏 stop being directly connected.

We now process the events on increasing time while maintaining the current
components. We do this by maintaining a graph 𝐺 = (ℰ, 𝑍) representing the
directly-connected relation, and the connected components in 𝐺. The set of
vertices in 𝐺 is the set of entities. The graph 𝐺 changes over time: at connect
events we insert new edges into 𝐺, and at disconnect events we remove edges.

At any given time 𝑡, 𝐺 contains an edge (𝑎, 𝑏) if and only if 𝑎 and 𝑏 are
directly connected at time 𝑡. Hence the components at 𝑡 (the maximal sets of
𝜀-connected entities) correspond to the connected components in 𝐺 at time 𝑡.
Since we know all times at which 𝐺 changes in advance, we can use the same
approach as Parsa [103] to maintain the connected components: we assign a
weight to each edge in 𝐺 and we represent the connected components using
a maximum weight spanning forest. The weight of edge (𝑎, 𝑏) is equal to the
time at which we remove it from 𝐺, that is, the time at which 𝑎 and 𝑏 become
directly disconnected. We store the maximum weight spanning forest 𝐹 using
a ST-tree [106], which allows for connectivity queries and updates in 𝑂(log 𝑛)
time. We make sure that 𝐹 is (partially-)persistent [44], so that we can represent
the set of entities at each edge implicitly. This avoids having to store a copy of
each entity in 𝐶u� at edge 𝑒.

We spend 𝑂(𝑛2) time to initialize the graph 𝐺 at 𝑡0 in a brute-force manner.
For each component we create a start vertex in ℛ. We also initialize a one-to-one
mapping 𝑀 from the current components in 𝐺 to the corresponding vertices in
ℛ. When we handle a connect event of entities 𝑎 and 𝑏 at time 𝑡, we query 𝐹 to
get the components 𝐶u� and 𝐶u� containing 𝑎 and 𝑏, respectively. Using 𝑀 we
locate the corresponding vertices 𝑣u� and 𝑣u� in ℛ. If 𝐶u� ≠ 𝐶u� we create a new
merge vertex 𝑣 in ℛ with time 𝑡u� = 𝑡, add edges (𝑣u�, 𝑣) and (𝑣u�, 𝑣) to ℛ labeled
𝐶u� and 𝐶u�, respectively. If 𝐶u� = 𝐶u� we do not change ℛ. Finally, we add the
edge (𝑎, 𝑏) to 𝐺 (which may cause an update to 𝐹), and update the mapping 𝑀.
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At a disconnect event we first query 𝐹 to find the component 𝐶 currently
containing 𝑎 and 𝑏. Using 𝑀 we locate the vertex 𝑢 corresponding to 𝐶. Next,
we delete the edge (𝑎, 𝑏) from 𝐺, and again query 𝐹. Let 𝐶u� and 𝐶u� denote the
components containing 𝑎 and 𝑏, respectively. If 𝐶u� = 𝐶u� we are done, meaning
𝑎 and 𝑏 are still 𝜀-connected. Otherwise we add a new split vertex 𝑣 to ℛ with
time 𝑡u� = 𝑡, and an edge 𝑒 = (𝑢, 𝑣) with 𝐶u� = 𝐶 as its component. We update
𝑀 accordingly.

Finally, we add an end vertex 𝑣 for each component 𝐶 in 𝐹 with 𝑡u� = 𝑡u� . We
connect the vertex 𝑢 = 𝑀(𝐶) to 𝑣 by an edge 𝑒 = (𝑢, 𝑣) and let 𝐶u� = 𝐶 be its
component.

Analysis. We need 𝑂(𝜏𝑛2 log 𝑛) time to compute all 𝑂(𝜏𝑛2) events and sort
them according to increasing time. To handle an event we query 𝐹 a constant
number of times, and we insert or delete an edge in 𝐹. These operations all
take 𝑂(log 𝑛) time. So the total time required for building ℛ is 𝑂(𝜏𝑛2 log 𝑛).

▶ Theorem 5.7. Given a set ℰ of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges, the Reeb graph ℛ has 𝑂(𝜏𝑛2) vertices and edges, and can be
computed in 𝑂(𝜏𝑛2 log 𝑛) time.

5.2.2 Computing the Maximal Groups
We now show how to compute all maximal groups using the Reeb graph
ℛ = (𝑉, 𝐸). We will ignore the requirements that each maximal group should
contain at least 𝑚 entities and have a minimal duration of 𝛿. That is, we assume
𝑚 = 1 and 𝛿 = 0. It is easy to adapt the algorithm for larger values.

Labeling the edges. Our algorithm labels each edge 𝑒 = (𝑢, 𝑣) in the Reeb
graph with a set of maximal groups 𝒢u�. The groups 𝐺 ∈ 𝒢u� are those groups
for which we have discovered that 𝐺 is a maximal group at a time 𝑡 ≤ 𝑡u� and
𝐺 ⊆ 𝐶u�. Each maximal group 𝐺 becomes maximal at a vertex, either because a

Figure 5.8: After split vertex u�, u�u�1 con-
tains the groups u�u�1 = u�1 ∪ u�2 (with
starting time u�u�), u�1, and u�2. Maximal
groups u�u�2 = u�3∪u�4 (with starting time
u�u�), u�3, and u�4 go to u�2. The maximal
groups u�u� and u�1 ∪ u�2 ∪ u�3 end at u�.
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t1t1t0 t2 t3 t4

1

2
3

4

(1, t0)

(2, t0)
(12, t1)

(1..4, t2)

(3, t0)

(4, t0) (34, t1)

(2, t0)
(1, t0)

(3, t0)
(4, t0)

(12, t1) (34, t1)
(2, t0)
(1, t0) (3, t0)

(4, t0)

(2, t0)

(1, t0)
(3, t0)

(4, t0)

(13, t2)

(24, t2)

Figure 5.9: The maximal groups as computed by our algorithm (a set {u�, u�, u�} is denoted by u�u�u�).

merge vertex created 𝐺 as a new group that is maximal, or because 𝐺 is now a
maximal set of entities that is still together after a split vertex. This means we
can compute all maximal groups as follows.

We traverse the set of vertices of ℛ in topological order. For every vertex 𝑣
we compute the maximal groups on its outgoing edge(s) using the information
on its incoming edge(s).

If 𝑣 is a start vertex it has one outgoing edge 𝑒 = (𝑣, 𝑢). We set 𝒢u� to {(𝐶u�, 𝑡u�)}
where 𝑡u� = 𝑡0. If 𝑣 is a merge vertex it has two incoming edges, 𝑒1 and 𝑒2. We
propagate the maximal groups from 𝑒1 and 𝑒2 on to the outgoing edge 𝑒, and
we discover (𝐶u�, 𝑡u�) as a new maximal group. Hence 𝒢u� = 𝒢u�1 ∪𝒢u�2 ∪{(𝐶u�, 𝑡u�)}.

If 𝑣 is a split vertex it has one incoming edge 𝑒, and two outgoing edges 𝑒1
and 𝑒2. A maximal group 𝐺 on 𝑒 may end at 𝑣, continue on 𝑒1 or 𝑒2, or spawn
a new maximal group 𝐺′ ⊂ 𝐺 on either 𝑒1 or 𝑒2. In particular, for any group
𝐺′ in 𝒢u�u�, there is a group 𝐺 in 𝒢u� such that 𝐺′ = 𝐺 ∩ 𝐶u�u� ≠ ∅. The starting
time of 𝐺′ is 𝑡′ = min{𝑡 ∣ (𝐺, 𝑡) ∈ 𝒢u� ∧ 𝐺′ ⊆ 𝐺}. Thus, 𝑡′ is the first time 𝐺′ was
part of a maximal group on 𝑒. Stated differently, 𝑡′ is the first time 𝐺′ was in a
component on a path to 𝑣. Figure 5.8 illustrates this case. If 𝑣 is an end vertex
it has no outgoing edges. So there is nothing to be done.

Figure 5.9 shows a complete example of a Reeb graph after labeling the edges
with their maximal groups.

Storing the maximal groups. We need a way to store the maximal groups 𝒢u�
on an edge 𝑒 = (𝑢, 𝑣) in such a way that we can efficiently compute the set(s)
of maximal groups on the outgoing edge(s) of a vertex 𝑣. We now show that
we can use a tree 𝒯u� to represent 𝒢u�, with which we can handle a merge vertex
in 𝑂(1) time, and a split vertex in 𝑂(𝑘) time, where 𝑘 is the number of entities
involved. The tree uses 𝑂(𝑘) storage.

We say a group 𝐺 is a subgroup of a group 𝐻 if and only if 𝐺 ⊆ 𝐻 and 𝐼u� ⊆ 𝐼u�.
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Figure 5.10: The grouping tree for the
edge between u�2 and u�3 in Figure 5.9.
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For example, in Figure 5.1(b) {𝑎1, 𝑎2} is a subgroup of {𝑎1, .., 𝑎4}. Note that both
𝐺 and 𝐻 could be maximal.

▶ Lemma 5.8. Let 𝑒 be an edge of ℛ, and let 𝑆 and 𝑇 be maximal groups in 𝒢u� with
starting times 𝑡u� and 𝑡u�, respectively. There is also a maximal group 𝐺 ⊇ 𝑆 ∪ 𝑇 on 𝑒
with starting time 𝑡u� ≥ max(𝑡u�, 𝑡u�), and if 𝑆 ∩ 𝑇 ≠ ∅ then 𝑆 is a subgroup of 𝑇 or
vice versa.

Proof. Clearly, 𝑆, 𝑇 ⊆ 𝐶u� and thus 𝑆 ∪ 𝑇 ⊆ 𝐶u�. Component 𝐶u� itself is also a
maximal group on 𝑒. By construction 𝐶u� must have the largest starting time 𝑡
of the groups in 𝒢u�. Hence 𝑡u� ≥ max(𝑡u�, 𝑡u�).

We prove the second statement by contradiction: assume 𝑆 ∩ 𝑇 ≠ ∅, and
𝑆 ⊈ 𝑇 or vice versa. Assume w.l.o.g. that 𝑡u� ≤ 𝑡u�. So the entities in 𝑆 are all
in a single component at all times 𝑡 ≥ 𝑡u� ≥ 𝑡u�. At any time 𝑡 ≥ 𝑡u� all entities
in 𝑇 are also in a single component. Since 𝑆 ∩ 𝑇 ≠ ∅ this must be the same
component that contains 𝑆. Hence 𝑆 ⊆ 𝑇, which together with 𝑡u� ≤ 𝑡u� proves
the statement.

We represent the groups 𝒢u� on an edge 𝑒 ∈ 𝐸 by a tree 𝒯u� (see Figure 5.10).
We call this the grouping tree. Each node 𝑣 represents a group 𝐺u� ∈ 𝒢u�. The
children of a node 𝑣 are the largest subgroups of 𝐺u�. From Lemma 5.8 it follows
that any two children of 𝑣 are disjoint. Hence an entity 𝑎 ∈ 𝐺u� occurs in only
one child of 𝑣. Furthermore, note that the starting times are monotonically
decreasing on the path from the root to a leaf: smaller groups started earlier.
A leaf corresponds to a smallest maximal group on 𝑒: a singleton set with an
entity 𝑎 ∈ 𝐶u�. It follows that 𝒯u� has 𝑂(𝑛) leaves, and therefore has size 𝑂(𝑛).
Note, however, that the summed sizes of all maximal groups can be quadratic.

Analysis. We analyze the time required to label each edge 𝑒 with a tree 𝒯u�
for a given Reeb graph ℛ. Topologically sorting the vertices takes linear time.
So the running time is determined by the processing time in each vertex, that
is, computing the tree(s) 𝒯u� on the outgoing edge(s) 𝑒 of each vertex. We can
handle all start vertices in 𝑂(𝑛) time in total. The end and merge vertices can be
handled on 𝑂(1) time each: the end vertices are trivial, and at a merge vertex 𝑣
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the tree 𝒯u� is simply a new root node with time 𝑡u� and as children the (roots
of the) trees of the incoming edges. At a split vertex we have to split the tree
𝒯 = 𝒯(u�,u�) of the incoming edge (𝑢, 𝑣) into two trees for the outgoing edges
of 𝑣. For this, we traverse 𝒯 in a bottom-up fashion, and for each node, check
whether it induces a vertex in one or both of the trees after splitting. This
algorithm runs in 𝑂(|𝒯|) time. Since |𝒯| = 𝑂(𝑛) the total running time of our
algorithm is 𝑂(𝑛|ℛ|) = 𝑂(𝜏𝑛3).

Reporting the groups. We can augment our algorithm to report all maximal
groups at split and end vertices. The main observation is that a maximal group
ending at a split vertex 𝑣, corresponds exactly to a node in the tree 𝒯(u�,u�) (before
the split) that has entities in leaves below it that separate at 𝑣. The procedures
for handling split and end vertices can easily be extended to report the maximal
groups of size at least 𝑚 and duration at least 𝛿 by simply checking this for
each maximal group. Although the number of maximal groups is 𝑂(𝜏𝑛3)
(Theorem 5.5), the summed size of all maximal groups can be Ω(𝜏𝑛4). The
running time of our algorithm is 𝑂(𝜏𝑛3 + 𝑁), where 𝑁 is the total output size.

▶ Theorem 5.9. Given a set ℰ of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges, we can compute all maximal groups in 𝑂(𝜏𝑛3 + 𝑁) time, where
𝑁 is the output size.

▶ Remark 5.10. Once again we can formulate our result in terms of the size
|ℛ| of the Reeb graph ℛ: our algorithm runs in 𝑂(𝜏𝑛2 log 𝑛 + |ℛ|𝑛 + 𝑁) time
where 𝑁 is again the size of the output (which is now at most 𝑂(|ℛ|𝑛2)). The
main difficulty in improving this is in getting an output-sensitive algorithm to
construct ℛ.

5.3 Robustness
The grouping structure definition we have given and analyzed has a number
of good properties. It fulfills monotonicity, and in the previous sections we
showed that there are only polynomially many maximal groups, which can be
computed in polynomial time as well. In this section we study the property
of robustness, which our definition of grouping structure does not have yet.
Intuitively, a robust grouping structure ignores short interruptions of groups,
as these interruptions may be insignificant at the temporal scale at which we
are studying the data. For example, if we are interested in groups that have
a duration of one hour or more, we may want to consider interruptions of a
minute or less insignificant.
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Figure 5.11: An u�-component at time u�.
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We introduce a new temporal parameter 𝛼, which is related to the temporal
scale at which the data is studied. Our robust grouping structure should ig-
nore interruptions of duration at most 𝛼. We realize this by letting the precise
moment of events be irrelevant beyond a value depending on 𝛼. Events that
happen within 𝛼 time of each other may cancel out, or their order may be
exchanged. The objective is to incorporate 𝛼 into our definitions while main-
taining the properties that we have for the (non-robust) grouping structure.
Note that 𝛼 is another parameter that allows us to obtain more generalized
views of the grouping structure by increasing its value. Obtaining generalized
views in this way is related to the concept of persistence in computational
topology [47, 49].

A possible definition of a robust grouping structure is based on the following
intuition: A set of entities forms a robust group on 𝐼 as long as every interval
𝐼′ ⊆ 𝐼 on which its entities are not in the same component has length at most 𝛼.
More formally: we say 𝐺 is a robust group on time interval 𝐼 if and only if: (i)
𝐺 contains at least 𝑚 entities, (ii) 𝐼 has length at least 𝛿, and (iii) for any time
𝑡 ∈ 𝐼 there is a time 𝑡′ ∈ [𝑡 − 𝛼/2, 𝑡 + 𝛼/2] and a component 𝐶 ∈ u�(𝑡′) such
that 𝐺 ⊆ 𝐶. Unfortunately, we can show that even determining whether there
is a robust group of size 𝑘 is NP-complete [28].

We consider a second definition for a robust group, which we will use from
now on. Two entities are 𝛼-relaxed directly connected at time 𝑡 if and only if they
are directly connected at some time 𝑡′ ∈ [𝑡 − 𝛼/2, 𝑡 + 𝛼/2]. Two entities 𝑎 and
𝑏 are 𝛼-relaxed 𝜀-connected at time 𝑡 if there is a sequence 𝑎 = 𝑎0, .., 𝑎u� = 𝑏 such
that 𝑎u� and 𝑎u�+1 are 𝛼-relaxed directly connected. Note that the precise times
may be different for different pairs 𝑎u� and 𝑎u�+1, as long as each time is in the
interval [𝑡 − 𝛼/2, 𝑡 + 𝛼/2]. A maximal set of 𝛼-relaxed 𝜀-connected entities at
time 𝑡 is an 𝛼-relaxed component, or 𝛼-component for short. An 𝛼-component at
time 𝑡 corresponds to a connected 3𝐷-component in a horizontal slice of ℳ
with thickness 𝛼 and centered at 𝑡 (see Figure 5.11). This notion of 𝛼-component
is similar to the 𝛼-Reeb graph as defined by Chazal and Sun [33].

A subset 𝐺 of 𝑘 entities is a robust group if and only if it is a group by the defini-
tion in the introduction, but where “component” is replaced by “𝛼-component”



96 Chapter 5 The Trajectory Grouping Structure

(a) (b)
Figure 5.12: Passing encounter, before and after (a).

Collapse encounter, before and after (b).

in condition (iii). This immediately leads to the definition of maximal robust
groups and a robust grouping structure. The robust grouping structure has
the property of monotonicity in the new parameter 𝛼 as well. Note that every
group which is a robust group according to the first definition, is also a robust
group according to the second definition. The opposite is not true. For instance,
in Figure 5.11, entities 𝑏1, .., 𝑏6 form a component by the second definition, but
not by the first.

5.3.1 Computation of Maximal Robust Groups
We can compute all maximal robust groups according to the second definition.
The idea is to modify the Reeb graph to a version that is parametrized by 𝛼 and
captures exactly the robust grouping structure for parameter 𝛼.

Let ℛ be the Reeb graph that we used for the grouping structure without
considering robustness. Note that this is the same as assuming 𝛼 = 0 in the
definition of the robust grouping structure, and we let ℛ0 = ℛ. For 𝛼 > 0
we define the Reeb graph parametrized in 𝛾 as ℛu� by imagining a process
that changes the Reeb graph for a growing parameter 𝛾, starting with ℛ0 and
ending with ℛu�/2.

We observe that a new 𝛼-component starts at time 𝛼/2 before two regular com-
ponents merge and form a new component. Symmetrically, an 𝛼-component
ends due to a split at time 𝛼/2 after a regular component splits. Both facts
follow from the new definition of 𝛼-relaxed directly connected. It implies that
in the process that maintains ℛu� for growing 𝛾, the split nodes move forward
in time, zippering together the outgoing edges, and the merge nodes move
backward in time, zippering together the incoming edges. All nodes move at
the same rate in 𝛾, which implies that in the process, the only event where the
Reeb graph changes structurally is when an (earlier) split node encounters a
(later) merge node. This can happen only if they are endpoints of the same
edge of the Reeb graph. The encounter is either a passing or a collapse (see
Figure 5.12).

Both encounters lead to new edges in the Reeb graph and can thus give rise
to new encounters when growing 𝛾 further. The collapse encounter reduces
the complexity of the Reeb graph: two nodes of degree 3 disappear and four
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Figure 5.13: The part of the
Reeb graph that yields Ω(u�3) en-
counter events (for u� = 16).
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edges become a single edge. The collapse event is exactly the situation where a
component splits and merges again, so by removing a split-merge pair involving
the same entities we ignore the temporary split of a component (or group).

A passing encounter maintains the complexity of the Reeb graph. Before
the passing encounter, a part of one group splits and merges with a different
group. After the passing encounter, the two groups merge (for a short time)
and then split again.

Next, we show that there are 𝑂(𝜏𝑛3) encounter events in the Reeb graph of
the robust version of the trajectory grouping structure, and this bound is tight
in the worst case.

▶ Lemma 5.11. For some set ℰ of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges, the structure of the Reeb graph ℛu� of ℰ changes Ω(𝜏𝑛3) times
when increasing 𝛾 from zero to infinity.

Proof. We show that there is a set of 𝑛 trajectories, each consisting of 𝜏 edges,
for which there are Ω(𝜏𝑛3) encounter events. The lemma then follows.

We use the same construction as in Lemma 5.4. So in all time intervals
[𝑡2u�, 𝑡2u�+1] we have a set 𝑆 of 3𝑛/4 stationary entities/discs and a set 𝐷 =
{𝑑1, .., 𝑑u�/4} entities, ordered from right to left, that move to the right in such a
way that 𝑑u� becomes directly (dis)connected with 𝑆 before 𝑑u�+1 (see Figure 5.5).
Let 𝑡u� be the first time at which 𝑑u�/4 becomes directly connected with 𝑆, and let
𝑡ℎ denote the last time 𝑑1 becomes directly disconnected with 𝑆. We now show
that the part of Reeb graph ℛ′ corresponding to the interval (𝑡u�, 𝑡ℎ) already
yields Ω(𝑛3) encounter events. Note that no other encounter events involving
other parts of the Reeb graph can interfere with the encounter events in ℛ′.

In between 𝑡u� and 𝑡ℎ every disc 𝑑u� becomes directly (dis)connected with 𝑆
Ω(𝑛) times. So ℛ′

u� initially contains of a path 𝑃 of Ω(𝑛2) edges. Each edge has
at least the set of entities 𝑆 associated with it, and possibly other entities as well.
The vertices on 𝑃 can be grouped in Ω(𝑛) sequences of 𝑘 = 𝑛/4 split vertices
𝑢1, .., 𝑢u� followed by 𝑘 merge vertices 𝑣1, .., 𝑣u�. At vertex 𝑢u� entity 𝑑u� splits from
𝑆 and at 𝑣u� entity 𝑑u� merges with 𝑆. See Figure 5.13.

By increasing 𝛾 each split vertex 𝑢u� will have a passing encounter with the
merge vertices 𝑣1, .., 𝑣u�−1 before it collapses with 𝑣u�. Hence each sequence
involves ∑u�

u�=1(𝑖 − 1) = Ω(𝑛2) encounter events. Since there are Ω(𝑛) such
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Figure 5.14: The part of
ℛu� before u� encounters
u�u�. The set u�u� merges
with u�u� at vertex u�u� (a). If
u� merges at both u�u� and u�u�
it has to leave (split) at a
vertex u� in between (b).

sequences this gives Ω(𝑛3) encounter events in a single timestep, and hence
Ω(𝜏𝑛3) in total.

▶ Theorem 5.12. Let ℰ be a set of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges. The structure of the Reeb graph ℛu� of ℰ changes at most 𝑂(𝜏𝑛3)
times when increasing 𝛾 from zero to infinity. This bound is tight in the worst case.

Proof. Lemma 5.11 gives a construction that shows that there may be Ω(𝜏𝑛3)
encounters.

Since each collapse event decreases the number of edges by three it follows
the number of collapse events is at most 𝑂(𝜏𝑛2). What remains is to prove that
the number of passing events is 𝑂(𝜏𝑛3). Each passing event involves a split
vertex 𝑢 and a merge vertex 𝑣. We now show that there are at most 𝑛 passing
events involving a given split vertex 𝑢. Since there are 𝑂(𝜏𝑛2) split vertices
this means the number of passing events is at most 𝑂(𝜏𝑛3).

Assume by contradiction that there are 𝑘 > 𝑛 passing events involving split
vertex 𝑢. Let 𝛾1, .., 𝛾u� be the values for 𝛾 for which these passing events occur
in non-decreasing order, and let 𝑣1, .., 𝑣u� be the corresponding merge vertices.
Just before 𝑢 passes 𝑣u� the edge 𝑒 = (𝑢, 𝑣u�) is an incoming edge of 𝑣u�. Let 𝐴u�
denote the set of entities on the other incoming edge of 𝑣u�, that is the set of
entities that merges with 𝐶u� at vertex 𝑣u� (see Figure 5.14(a)).

Since 𝑘 > 𝑛 there must be an entity 𝑎 that 𝑢 “passes” at least twice. That is,
𝑢 passes 𝑣u� and 𝑣u�, with 𝑖 < 𝑗, and 𝑎 ∈ 𝐴u� and 𝑎 ∈ 𝐴u�. Now consider the Reeb
graph ℛu� just after 𝑢 passes 𝑣u� (which means 𝛾 > 𝛾u�). Since 𝑢 still has to pass
𝑣u� there is a path 𝑄 connecting 𝑢 to 𝑣u�. By further increasing 𝛾 this path will
eventually become a single edge (𝑢, 𝑣u�), which will flip to (𝑣u�, 𝑢) when 𝑢 passes
𝑣u� at 𝛾 = 𝛾u�.

Entity 𝑎 is present at the first vertex of 𝑄 (vertex 𝑢), and it merges again with
path 𝑄 at 𝑣u�. Clearly, this means that 𝑄 contains a split vertex 𝑤 at which 𝑎
splits from path 𝑄 before it can return to 𝑄 in vertex 𝑣u� (see Figure 5.14 (b)).

We now have two paths connecting 𝑤 to 𝑣u�: the path that 𝑎 follows and the
subpath of 𝑄. We again have that by increasing 𝛾 both paths will become
singleton edges connecting 𝑤 to 𝑣u�. Eventually both these edges are removed
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in a collapse event for some �̂�. If 𝑤 = 𝑢 this means (𝑢, 𝑣u�) is actually a collapse
event instead of a passing event. Contradiction. If 𝑤 ≠ 𝑢 we have that 𝑡u� > 𝑡u�,
and therefore �̂� < 𝛾u�. The collapse event at �̂� will consume both 𝑤 and 𝑣u�,
which means 𝑢 can no longer pass 𝑣u�. Contradiction. We conclude that the
number of passing events involving 𝑢 is at most 𝑛. With 𝑂(𝜏𝑛2) vertices this
yields the desired bound of 𝑂(𝜏𝑛3) passing events.

Algorithmically, we start with the Reeb graph ℛ0 and examine each edge.
Any edge that leads from a split node to a merge node and whose duration
is at most 𝛼 is inserted in a priority queue, where the duration of the edge is
the priority. We handle the encounter events in the correct order, changing
the Reeb graph and possibly inserting new encounter events in the priority
queue. Each event is handled in 𝑂(log 𝑛) time since it involves at most 𝑂(1)
priority queue operations. Since there are 𝑂(𝜏𝑛3) events (Theorem 5.12) this
takes 𝑂(𝜏𝑛3 log 𝑛) time in total. Once we have the Reeb graph ℛu�/2, we can
associate the trajectories with its edges as before. The computation of the
maximal robust groups is done in the same way as computing the maximal
groups on the normal Reeb graph ℛ. We conclude:

▶ Theorem 5.13. Given a set ℰ of 𝑛 entities, in which each entity travels along a
trajectory of 𝜏 edges, we can compute all robust maximal groups in 𝑂(𝜏𝑛3 log 𝑛 + 𝑁)
time, where 𝑁 is the output size.

5.4 Evaluation
To see if our model of the grouping structure is practical and indeed captures
the grouping behavior of the entities we implemented and evaluated our algo-
rithms. We would like to visually inspect the maximal groups identified by our
algorithm, and compare this to our intuition of groups. For a small number of
(short) trajectories we can still show this in a figure, see for example Figure 5.15,
which shows the monotonicity of the maximal groups in size and duration.
However, for a larger number of trajectories the resulting figures become too
cluttered to analyze. So instead we generated short videos.1

We use two types of data sets to evaluate our method: a synthetic data set
generated using a slightly modified version of the NetLogo Flocking model
[119, 120], and a real-world data set consisting of deer, elk, and cattle, tracked
in the Starkey project [100].

1See www.staff.science.uu.nl/~staal006/grouping.

www.staff.science.uu.nl/~staal006/grouping
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Figure 5.15: The maximal groups for varying parameter values. The time associated with each
trajectory vertex is proportional to its u�-coordinate.

NetLogo. We generated several data sets using an adapted version of the
NetLogo Flocking model [120]. In our adapted model the entities no longer
wrap around the world border, but instead start to turn when they approach
the border. Furthermore, we allow small random direction changes for the
entities. The data set that we consider here contains 400 trajectories, with 818
edges each. Similar to Figure 5.15, our videos show all maximal groups for
varying parameter values.

The videos show that our model indeed captures the crucial properties
of grouping behavior well. We notice that the choice of parameter values is
important. In particular, if we make 𝜀 too large we see that the entities are
loosely coupled, and too many groups are found. Similarly, for large values of
𝑚 virtually no groups are found. However, for reasonable parameter settings,
for example 𝜀 = 5.25, 𝑚 = 4, and 𝛿 = 100, we can see that our algorithm
identified virtually all sets of entities that travel together. Furthermore, if we
see a set of entities traveling together that is not identified as group, we indeed
see that they disperse quickly after they have come together. The coloring of
the line-segments also nicely shows how smaller groups merge into larger ones,
and how the larger groups break up into smaller subgroups. This is further
evidence that our model captures the grouping behavior well.

Starkey. We also ran our algorithms on a real-world data set, namely on
tracking data obtained in the Starkey project [100]. This data set captures the
movement of deer, elk, and cattle in Starkey, a large forest area in Oregon (US),
over three years. Not all animals are tracked during the entire period, and
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positions are not reported synchronously for all entities. Thus, we consider
only a subset of the data, and resample the data such that all trajectories have
vertices at the same (regularly spaced) times. We chose a period of 30 days
for which we have the locations of most of the animals. This yields a data set
containing 126 trajectories with 1264 vertices each. In the Starkey video we can
see that a large group of entities quickly forms in the center, and then slowly
splits into multiple smaller groups. We notice that some entities (groups) move
closely together, whereas others often stay stationary, or travel separately.

Running times. Since we are mainly interested in how well our model cap-
tures the grouping behavior, we do not extensively evaluate the running times
of our algorithms. On our desktop system with a AMD Phenom II X2 CPU run-
ning at 3.2Ghz our algorithm, implemented in Haskell, computes the grouping
structure for our data sets in a few seconds. Even for 160 trajectories with
roughly 20 thousand vertices each we can compute and report all maximal
groups in three minutes. Most of the time is spent on computing the Reeb
graph, in particular on computing the connect/disconnect events. Our im-
plementation uses a slightly easier, yet slower, data structure to represent the
maximum-weight spanning forest during the construction of the Reeb graph
compared to the ST-trees described in Section 5.2.1. So we expect that some
speedup is still possible.

5.5 Concluding Remarks
We introduced a trajectory grouping structure which uses Reeb graphs and a
notion of persistence for robustness. We showed how to characterize and effi-
ciently compute the maximal groups and group changes in a set of trajectories,
and bounded their maximal number. Our paper demonstrates that compu-
tational topology provides a mathematically sound way to define grouping
of moving entities. The complexity bounds, algorithms and implementation
together form the first comprehensive study of grouping. Our videos show
that our methods produce results that correspond to human intuition.

Throughout this chapter, we assumed that the entities move in ℝ2. Note
however, that our analysis and our algorithms do not actually use, or need, this
information. Indeed, they use only the structure of the Reeb graph. Further-
more, to construct the Reeb graph we need only the times at which two entities
are at distance 𝜀. There are only 𝑂(𝜏𝑛2) such times, even for entities moving
in ℝu�. Hence, all our results also hold for entities moving in ℝu�, with 𝑑 > 2.

Further work includes more extensive experiments together with domain
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specialists, such as behavioral biologists, to ensure further that the grouping
structure captures groups and events in a natural, expected way, and changes
in the parameters have the desired effect. At the same time, our research
may be linked to behavioral models of collective motion [110] and provide a
(quantifiable) comparison of these.

We expect that for realistic inputs the size of the Reeb graph, and thus the
grouping structure, is much smaller than the worst-case bound that we proved.
Hence an interesting open problem is to design an output-sensitive algorithm
to construct the Reeb graph, or to analyze its complexity under realistic input
models.



Grouping under
Geodesic Distance

Chapter

6
In this chapter we extend the trajectory grouping structure from the previous

chapter by incorporating contextual information. The entities generating the
trajectories typically do not move in an infinitely large unrestricted space.
Instead, they live in a world containing buildings, walls, lakes, etc., through
which they cannot move. We incorporate obstacles into the trajectory grouping
structure, and measure the distance between entities by their geodesic distance.
The geodesic distance between two entities is the distance that needs to be
traversed for one entity to reach the other entity. This approach gives a more
natural notion of groups because it separates entities moving on opposite sides
of obstacles like fences or water bodies.

Trajectory grouping structure. We are given a set ℰ of 𝑛 entities, each moving
along a piecewise linear trajectory with 𝜏 vertices, and a set of pairwise disjoint
polygonal obstacles

𝒬
= {𝒪1, .., 𝒪ℎ}. Let 𝑚 denote the total complexity of

𝒬
.

Our objective is again to compute the trajectory grouping structure and all
maximal groups. To this end we need the Reeb graph ℛ capturing connectivity
events of the entities in ℰ (see Section 5.1). Since the entities now move amidst
obstacles we measure the distance between two entities and by their geodesic
distance. This means that we may get more than 𝑂(𝜏𝑛2) times at which two
sets of entities are at distance 𝜀. We refer to such times as critical events. Since
the Reeb graph has a vertex for each critical event, it may also have a complexity
higher than 𝑂(𝜏𝑛2). Furthermore, to construct ℛ we need to find those critical
events. It is no longer obvious how to do that efficiently.

Once we have the Reeb graph ℛ, we can use the analysis from Section 5.1.2
to bound the number of maximal groups, and the algorithms from Section 5.2
to compute them. So the interesting part is to analyze the complexity of ℛ and
to determine how to compute it.

Terminology and notation. Recall that we denote the position of entity 𝑎 at
time 𝑡 by 𝑎(𝑡), and that ‖𝑝𝑞‖ denotes the Euclidean distance between points 𝑝
and 𝑞. Let 𝜉u�u�(𝑡) = ‖𝑎(𝑡)𝑏(𝑡)‖ denote the (Euclidean) distance between entities 𝑎
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and 𝑏 at time 𝑡. A path 𝑃 = 𝑝1, .., 𝑝u� from 𝑝1 to 𝑝u� is a polygonal line with vertices
𝑝1, .., 𝑝u�, and has length 𝜍(𝑃) = ∑u�−1

u�=1 ‖𝑝u�𝑝u�+1‖. A path is obstacle-avoiding if it
is disjoint from the interior of all obstacles in

𝒬
. A path between 𝑝 and 𝑞 is a

geodesic, denoted 𝑔(𝑝, 𝑞), if it has minimum length among all obstacle-avoiding
paths. We refer to the length of 𝑔(𝑝, 𝑞) as the geodesic distance between 𝑝 and
𝑞. We denote the geodesic distance between 𝑎 and 𝑏 at time 𝑡 by 𝜍u�u�(𝑡) =
𝜍(𝑔(𝑎(𝑡), 𝑏(𝑡))).

To determine if a set of entities forms a group, we have to decide if they
are close together. As in Chapter 5 we model this by a spatial parameter 𝜀:
two entities 𝑎 and 𝑏 are directly connected at time 𝑡 if they are within (geodesic)
distance 𝜀 from each other, that is, 𝜍u�u�(𝑡) ≤ 𝜀. A set of entities ℰ′ is 𝜀-connected
at time 𝑡 if for any pair 𝑎, 𝑏 ∈ ℰ′ there is a sequence 𝑎 = 𝑎0, 𝑎1, .., 𝑎u� = 𝑏 such
that 𝑎u� and 𝑎u�+1 are directly connected.

We refer to a time at which entities 𝑎 and 𝑏 become directly connected or
disconnected as an 𝜀-event. At such a time the distance between 𝑎 and 𝑏 is
exactly 𝜀. If an 𝜀-event also connects or disconnects the maximal 𝜀-connected
set(s) containing 𝑎 and 𝑏, it is a critical event. A (maximal) 𝜀-connected set of
entities ℰ′ is a group if it is 𝜀-connected at any time 𝑡 in a time interval of length
at least 𝛿, and it has at least a certain size. We are again interested only in
maximal groups (see Chapter 5).

Results and organization. The number of critical events, and thus the size of
the Reeb graph, depends on the obstacles and their complexity. We study three
settings for the obstacles. In the simplest case, all entities move inside a simple
polygon with 𝑚 vertices. In the most general case, individual obstacles can
have any shape, location, and complexity, but they are disjoint and have total
complexity 𝑚. As an intermediate case we assume that the distance between
any two non-adjacent obstacle edges is at least 𝜀. In this case we say that the
obstacles are well-spaced.

Our results are listed in Table 6.1. For the simple polygon case, which we
treat in Section 6.2, our bounds are tight. The upper bounds for the well-spaced
obstacles case, and the general obstacles case include a 𝜆4(𝑛) term, where 𝜆u�(𝑛)
denotes the maximum length of a Davenport-Schinzel sequence of order 𝑠 with
𝑛 symbols. Since 𝜆4(𝑛) is only slightly superlinear, our bounds for these cases
are almost tight. We present these results in Sections 6.3 and 6.4, respectively.
For all cases we also bound the total number of 𝜀-events, and we show how to
compute ℛ efficiently.
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Lower bound Upper bound Algorithm

No obstacles Ω(𝜏𝑛2) 𝑂(𝜏𝑛2) 𝑂(𝜏𝑛2 log 𝑛)
Simple
polygon Ω(𝜏𝑛2) 𝑂(𝜏𝑛2) 𝑂(𝜏𝑛2(log2 𝑚 + log 𝑛) + 𝑚)

Well-spaced
obstacles Ω(𝜏(𝑛2 + 𝑛𝑚)) 𝑂(𝜏(𝑛2 + 𝑚𝜆4(𝑛))) 𝑂(𝜏𝑛2𝑚 log 𝑛)

General
obstacles

Ω(𝜏(𝑛2 +
𝑛𝑚 min{𝑛, 𝑚})) 𝑂(𝜏(𝑛2 + 𝑚2𝜆4(𝑛))) 𝑂(𝜏𝑛2𝑚2 log 𝑛 + 𝑚2 log 𝑚)

Table 6.1: The number of critical events (i.e. the size of ℛ), and the time required to construct ℛ. Note
that the input size is Θ(u�u� + u�) (with u� = 0 in the “No obstacles” case).

6.1 Preliminaries
Let 𝑎 and 𝑏 be two entities, each moving with a constant speed along a straight
line during interval 𝐼, and let 𝑝 be a fixed point in ℝ2. During 𝐼, the Euclidean
distance 𝜉u�u�(𝑡) between 𝑎 and 𝑝 is a convex hyperbolic function in 𝑡 that has the
form √𝑄(𝑡), for some quadratic function 𝑄. The Euclidean distance between
𝑎 and 𝑏 is a convex hyperbolic function of the same form. Since 𝜉u�u� is convex,
there are at most two times in 𝐼 such that 𝜉u�u�(𝑡) = 𝜀. The same applies for 𝜉u�u�.

The geodesic distance 𝜍u�u�(𝑡) between 𝑎 and 𝑝 is a piecewise function. At times
where the geodesic 𝑔(𝑎(𝑡), 𝑝) consists of a single line segment, the geodesic
distance is simply the Euclidean distance. When the geodesic consists of more
than one line segment we can decompose it into two parts: a line segment
𝑔(𝑎(𝑡), 𝑢) = 𝑎(𝑡)𝑢, and a path 𝑔(𝑢, 𝑝), where 𝑢 is the first obstacle vertex on
𝑔(𝑎(𝑡), 𝑝). Similarly, if the geodesic 𝑔(𝑎(𝑡), 𝑏(𝑡)) between 𝑎 and 𝑏 consists of
more than one segment we can decompose it into three parts 𝑎(𝑡)𝑢, 𝑔(𝑢, 𝑣),
and 𝑣𝑏(𝑡) (we may have 𝑢 = 𝑣). It follows that each piece of 𝜍u�u� is convex and
hyperbolic. The pieces of 𝜍u�u� are convex as well, since they are of the form
𝜉u�u�(𝑡) + 𝐶 + 𝜉u�u�(𝑡) = √𝑄1(𝑡) + 𝐶 + √𝑄2(𝑡), for some quadratic functions 𝑄1
and 𝑄2 and a constant 𝐶. Therefore, we again have that on each piece there are
at most two times where 𝜍u�u�(𝑡) is exactly 𝜀. The same applies for 𝜍u�u�(𝑡).

We obtain the same results when 𝑎 and 𝑏 move on piecewise linear trajectories,
rather than lines. The functions then simply consist of more pieces.

▶ Lemma 6.1. Let ℱ = 𝑓1, .., 𝑓u� be a set of 𝑛 piecewise (partial) functions, each
function 𝑓u� consisting of 𝜏 pieces 𝑓 1

u� , .., 𝑓 u�
u� , such that any two pieces 𝑓 u�

u� and 𝑓 ℓ
u� intersect

each other at most 𝑠 times. The lower envelope ℒ of ℱ has complexity 𝑂(𝜏𝜆u�+2(𝑛)).
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Proof. Let 𝐷 = ⋃ dom(𝑓u�) denote the domain of ℱ. We partition 𝐷 into 𝜏
intervals 𝐷1, .., 𝐷u� , such that each interval contains at most 𝑂(𝑛) pieces of
functions in ℱ; if a piece 𝑓 u�

u� is (partially) defined in two subsequent intervals
𝐷ℓ and 𝐷ℓ+1 we split 𝑓 u�

u� into two separate pieces. The total number of pieces
in ℱ is still 𝑂(𝜏𝑛), and the number of pieces in a single interval 𝐷u� is also still
𝑂(𝑛). Thus, in each interval 𝐷u�, the lower envelope ℒu� of the pieces in that lie
in 𝐷u� has complexity at most 𝑂(𝜆u�+2(𝑛)) [2]. The intervals 𝐷u� are disjoint, so
the lower envelope of ℱ is the concatenation of the 𝜏 lower envelopes ℒu�. The
lemma follows.

Analogous to Lemma 6.1 we can show that the upper envelope of ℱ has
complexity 𝑂(𝜏𝜆u�+2(𝑛)).

6.2 Simple Polygon
We first focus our attention on entities moving in a simply-connected polygonal
domain.

6.2.1 Lower Bound

For entities moving in ℝ2 without obstacles the number of critical events can be
Ω(𝜏𝑛2) (Lemma 5.1). Clearly, this lower bound also holds for entities moving
inside a simple polygon.

6.2.2 Upper Bound
Let 𝑎 and 𝑏 be two entities, each moving along a line during interval 𝐼, and let
𝜍(𝑡) = 𝜍u�u�(𝑡) be the function describing the geodesic distance between 𝑎 and 𝑏
during interval 𝐼.

▶ Lemma 6.2. The function 𝜍 is convex.

Proof. Let [𝑡u�−1, 𝑡u�] and [𝑡u�, 𝑡u�+1] be two consecutive time intervals, correspond-
ing to pieces 𝜍u� and 𝜍u�+1 of 𝜍. We now show that 𝜍 is convex on [𝑡u�−1, 𝑡u�+1].

Let 𝑔u� and 𝑔u�+1 denote the geodesic shortest paths corresponding to 𝜍u� and
𝜍u�+1, respectively. Geodesics 𝑔u� and 𝑔u�+1 differ by at most one vertex 𝑢 (assuming
general position of the obstacle vertices), and this vertex occurs either at the
beginning or the end of the geodesic. Consider the case that 𝑢 is the first
vertex of 𝑔u�+1, and 𝑢 does not occur on 𝑔u�. See Figure 6.1(a). All other cases are
symmetric. Let 𝑣 be the second vertex of 𝑔u�+1 (and thus the first vertex of 𝑔u�).
We have 𝜍u�(𝑡) = ‖𝑎(𝑡)𝑣‖ + 𝜍(𝑣, 𝑏(𝑡)) and 𝜍u�+1(𝑡) = ‖𝑎(𝑡)𝑢‖ + ‖𝑢𝑣‖ + 𝜍(𝑣, 𝑏(𝑡)). It
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Figure 6.1: (a) Geodesics u�u� (purple) and u�u�+1 differ by at most one vertex; the first vertex u� on u�u�+1. (b)
The corresponding functions u�u� and u�u�+1. Using that u�(u�u�) lies below u�(u�)u�(u�) (blue line segment)
and that u�(u�) lies below u�(u�u�)u�(u�) (red line segment) we show that that u� is convex.

follows that the individual pieces 𝜍u� and 𝜍u�+1 are (convex) hyperbolic functions,
that 𝜍u�(𝑡u�) = 𝜍u�+1(𝑡u�), and that for any time 𝑡 ∈ [𝑡u�−1, 𝑡u�+1], 𝜍u�+1(𝑡) ≥ 𝜍u�(𝑡). We
use these properties to show that 𝜍 is convex on [𝑡u�−1, 𝑡u�+1].

Consider the space 𝕋 × ℝ. We show that for any three times 𝑠, 𝑚, 𝑡 ∈
[𝑡u�−1, 𝑡u�+1], with 𝑠 ≤ 𝑚 ≤ 𝑡, the point 𝜍(𝑚) lies below the line segment (func-
tion) 𝜍(𝑠)𝜍(𝑡), that is 𝜍(𝑚) ≤ 𝜍(𝑠)𝜍(𝑡)(𝑚). Since 𝜍u� and 𝜍u�+1 are convex, the
only interesting case is when 𝑠 lies on 𝜍u� and 𝑡 lies on 𝜍u�+1. We proceed by case
distinction on 𝑚.

For 𝑚 ≤ 𝑡u� we use that 𝜍u� is convex and that that for any time 𝑡, 𝜍u�+1(𝑡) ≥ 𝜍u�(𝑡):

𝜍(𝑚) = 𝜍u�(𝑚) ≤ 𝜍u�(𝑠)𝜍u�(𝑡)(𝑚) ≤ 𝜍u�(𝑠)𝜍u�+1(𝑡)(𝑚) = 𝜍(𝑠)𝜍(𝑡)(𝑚).

For 𝑚 > 𝑡u� we use that 𝜍u�+1 is convex, and thus 𝜍(𝑚) ≤ 𝜍u�+1(𝑡u�)𝜍u�+1(𝑡)(𝑚) =
𝜍(𝑡u�)𝜍(𝑡)(𝑚). By using the same argument as for the previous case we get
𝜍(𝑡u�) ≤ 𝜍(𝑠)𝜍(𝑡)(𝑡u�). It follows that the line segment 𝜍(𝑡u�)𝜍(𝑡) lies below
𝜍(𝑠)𝜍(𝑡), and thus 𝜍(𝑚) ≤ 𝜍(𝑡u�)𝜍(𝑡)(𝑚) ≤ 𝜍(𝑠)𝜍(𝑡)(𝑚). See Figure 6.1(b) for an
illustration. It follows that 𝜍 is convex.

▶ Theorem 6.3. Let ℰ be a set of 𝑛 entities, each moving in a simple polygon along a
piecewise linear trajectory with 𝜏 vertices. The number of 𝜀-events is at most 𝑂(𝜏𝑛2).

Proof. Fix a pair of entities 𝑎 and 𝑏. Both 𝑎 and 𝑏 move along trajectories with
𝜏 vertices. So there are 2𝜏 − 1 intervals during which both 𝑎 and 𝑏 move along
a line. During each such interval 𝜍u�u� is convex (Lemma 6.2). So there are at
most two times in each interval at which 𝜍u�u�(𝑡) = 𝜀. The lemma follows.



108 Chapter 6 Grouping under Geodesic Distance

6.2.3 Algorithm
Next, we describe how to compute all 𝜀-events. The high level overview of
our algorithm is as follows. For each pair of entities 𝑎 and 𝑏, we first find a
time 𝑡min such that the geodesic distance 𝜍(𝑡) = 𝜍u�u�(𝑡) between 𝑎 and 𝑏 is
minimal. Clearly, if 𝜍(𝑡min) > 𝜀 there is no time at which 𝑎 and 𝑏 are at distance
𝜀. Otherwise, we use the fact that 𝜍 is convex (Lemma 6.2). This means that
on 𝐼− = (−∞, 𝑡min] it is monotonically decreasing, and on 𝐼+ = [𝑡min, ∞) it
is monotonically increasing. Hence, there are at most two times 𝑡− ∈ 𝐼− and
𝑡+ ∈ 𝐼+ such that 𝜍(𝑡) = 𝜀. We now find 𝑡− and 𝑡+ using parametric search:
𝑡− (𝑡+) is the earliest (latest) time in 𝐼− (𝐼+) such that 𝜍(𝑡) ≤ 𝜀. To actually find
𝑡min, we use the same approach. At 𝑡min the derivative 𝜍′ of 𝜍 is zero. Since
𝜍 is convex, its derivative is monotonically increasing. Therefore, we can find
𝑡min using a parametric search: 𝑡min is the earliest time such that 𝜍′(𝑡) ≥ 0.

Finding the times 𝑡min, 𝑡−, and 𝑡+. We use the generic parametric search
algorithm described in Section 2.1. For our purpose, it suffices to use only the
first part of the technique, i.e. the result from Theorem 2.1.

To find 𝑡min we use 𝒫(𝑡) = 𝜍′(𝑡) ≥ 0 as predicate. To find 𝑡− and 𝑡+ we use
𝒫(𝑡) ≤ 𝜀, and 𝒫(𝑡) ≥ 𝜀, respectively. In all these cases we need an algorithm
𝒜 that can test 𝒫(𝑡) for a given time 𝑡. This means that we need an efficient
algorithm to compute 𝜍(𝑡) and a functional description of 𝜍. To this end, we
preprocess the input polygon for shortest path queries. We triangulate the
polygon in 𝑂(𝑚) time [34], and build the data structure 𝒟 of Guibas and
Hershberger [64]. This also takes 𝑂(𝑚) time, and allows us to find the length
of the shortest path between two fixed points 𝑝 and 𝑞 in 𝑂(log 𝑚) time. In
particular, this means that for a given time 𝑡, we can compute 𝜍(𝑡) and 𝜍′(𝑡) in
𝑂(log 𝑚) time.

In the parametric search we have to run our algorithm 𝒜 on the unknown
optimum 𝑡∗, with the goal of generating comparisons 𝐸(𝑡∗). This means we
have to query 𝒟 with the unknown points 𝑎(𝑡∗) and 𝑏(𝑡∗). Before we describe
this process in more detail we briefly review the data structure 𝒟 of Guibas
and Hershberger [64].

Data structure 𝒟 represents the polygon 𝑃 by a balanced binary tree. Each
node 𝜈 in the tree represents a sub-polygon 𝑃u� of 𝑃, and stores a diagonal that
splits 𝑃u� into two sub-polygons; the polygons corresponding to the children of 𝜈.
The leaves of the tree represent triangles. See Figure 6.2(a) and (b). Additionally,
each node 𝜈 stores a set of hourglasses. An hourglass 𝐻u�u� represents the shortest
paths between two diagonals 𝑒 and 𝑓 of 𝑃u�. Two such hourglasses 𝐻u�u� and 𝐻u� u�
can be concatenated (combined) into a new hourglass 𝐻u�u� efficiently [64].
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Figure 6.2: (a) Input polygon u� is decomposed into sub-polygons by its diagonals. (b) The binary
tree corresponding to the diagonals. A shortest path between u� and u� corresponds to a sequence of
diagonals in the tree. (c) Each sub-polygon stores a set of hourglasses that represent shortest paths
between diagonals. These hourglasses can be concatenated together. (d) The final step of a shortest
path query: finding the segment through which the shortest path enters the hourglass.

A shortest path query in 𝒟 with end points 𝑝 and 𝑞 consists of four steps: (1)
We find the triangles Δu� and Δu� containing 𝑝 and 𝑞, respectively, using the point
location data structure by Edelsbrunner, Guibas, and Stolfi [46]. (2) We find
the sequence of diagonals (nodes) 𝑑1, .., 𝑑u� on the path between Δu� and Δu� in
𝒟. (3) We concatenate the hourglasses on this path to obtain one hourglass 𝐻
between 𝑑1 and 𝑑u�. See Figure 6.2(c). (4) The hourglass 𝐻 partitions 𝑑1 and 𝑑u�
into small segments. We need to find the segment through which the shortest
path between 𝑝 and 𝑞 enters 𝐻 and through which it leaves 𝐻. See Figure 6.2(d).

A shortest path query at the unknown time 𝑡∗. Consider a query in 𝒟 with
the unknown points 𝑎(𝑡∗) and 𝑏(𝑡∗). In step (1) we query the data structure
by Edelsbrunner, Guibas, and Stolfi [46] to find the triangle Δu�(u�∗) containing
𝑎(𝑡∗). In such a query, we follow a path in a layered DAG. Each node in this
DAG corresponds to a comparison of the form: “is 𝑎(𝑡∗)u� at most 𝑥”, or “is 𝑎(𝑡∗)
above line segment 𝑠”. Hence, each such node yields a comparison (low degree
polynomial) involving 𝑡∗. Similarly, we find the triangle Δu�(u�∗) containing 𝑏(𝑡∗).
Once we know these triangles, steps (2) and (3) of the query algorithm are
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independent of 𝑡∗; that is, they do not yield any new comparisons involving
𝑡∗. Finally, in step (4) we determine through which segments the shortest path
between 𝑎(𝑡∗) and 𝑏(𝑡∗) enters and leaves hourglass 𝐻. This involves computing
the intersection points between 𝑑1 (𝑑u�) and a number of line segments 𝑎(𝑡∗)ℎu�
(𝑏(𝑡∗)ℎu�), for some ℎu� ∈ 𝐻. Each such intersection yields a small number of com-
parisons (low degree polynomials) involving 𝑡∗. By now we have encountered
all comparisons made by the query algorithm, so we can obtain the exact value
of 𝑡∗ from the interval 𝐼∗. Furthermore, note that 𝐻 provides the description of
the piece of the function 𝜍 containing 𝜍(𝑡∗) that we need.

Since a query, and thus our algorithm 𝒜, takes 𝑂(log 𝑚) time, it now im-
mediately follows from Theorem 2.1 that we can compute 𝑡min, 𝑡−, and 𝑡+ in
𝑂(log2 𝑚) time each. We thus obtain the following result.

▶ Lemma 6.4. Let ℰ be a set of 𝑛 entities, each moving in a simple polygon 𝒫
along a piecewise linear trajectory with 𝜏 vertices. We can compute all 𝜀-events in
𝑂(𝜏𝑛2 log2 𝑚 + 𝑚) time, where 𝑚 is the number of vertices in 𝒫.

To compute ℛ we can now use the algorithm from Theorem 5.7: at each
𝜀-event we insert or delete an edge in 𝐺. This takes 𝑂(log 𝑛) time per 𝜀-event,
and thus 𝑂(𝜏𝑛2 log 𝑛) time in total. We conclude:

▶ Theorem 6.5. Let ℰ be a set of 𝑛 entities, each moving in a simple polygon 𝒫
along a piecewise linear trajectory with 𝜏 vertices. The Reeb graph ℛ representing the
movement of the entities in ℰ has size 𝑂(𝜏𝑛2) and can be computed in 𝑂(𝜏𝑛2(log2 𝑚+
log 𝑛) + 𝑚) time, where 𝑚 is the number of vertices in 𝒫.

6.3 Well-spaced Obstacles
Next, we consider the situation where the entities move in a domain with
multiple well-spaced polygonal obstacles. For such obstacles, the distance
between any pair of non-adjacent obstacle edges is at least 𝜀.

6.3.1 Lower Bound
▶ Lemma 6.6. The total number of critical events for a set of 𝑛 entities, each moving
amidst a set of well-spaced obstacles

𝒬
along a piecewise linear trajectory with 𝜏 vertices,

is Ω(𝜏(𝑛2 + 𝑛𝑚)), where 𝑚 is the total complexity of
𝒬

.

Proof. We describe a construction in which the entities move along lines that
yields Ω(𝑛𝑚) critical events. We repeat this construction in Ω(𝜏) time intervals.
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Figure 6.3: The lower bound construction
for well-spaced obstacles. The entities of
a pair u�, u� are within distance u� from each
other when both move in a green interval.
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Since we already have a Ω(𝜏𝑛2) lower bound for entities moving in ℝ2 without
obstacles, the lemma then follows.

The construction that we use is sketched in Figure 6.3. We have two horizontal
lines ℓu� and ℓu� that are within vertical distance 𝜀 of each other. Our obstacles
essentially form a wall separating the two lines that has Θ(𝑚) openings. Each
obstacle is triangular, and thus well-spaced by itself. Furthermore, the obstacles
are at distance at least 𝜀 from each other, so

𝒬
is well-spaced. Our set of entities

consists of two equal-sized subsets 𝐴 and 𝐵. The entities move in pairs; one
entity 𝑎 from 𝐴 and one entity 𝑏 from 𝐵. Throughout the movement they
maintain 𝑎u� = 𝑏u�, and stay far away from any other entities. It is easy to see
that this yields Ω(𝑛𝑚) critical events as claimed.

6.3.2 Upper Bound
The obstacles are well-spaced, so if two entities are at geodesic distance 𝜀 the
geodesic consists of at most three line segments. We now start with some
bounds on the total number of 𝜀-events.

▶ Observation 6.7. There are at most 𝑂(𝜏𝑛2) 𝜀-events where the geodesic between
the two entities involved is a single line segment.

▶ Lemma 6.8. Let ℰ be a set of 𝑛 entities, each moving amidst a set of well-spaced
obstacles

𝒬
along a piecewise linear trajectory with 𝜏 vertices. The number of 𝜀-events

is at most 𝑂(𝜏𝑛2𝑚), where 𝑚 is the total complexity of
𝒬

.

Proof. By Observation 6.7 there are 𝑂(𝜏𝑛2) 𝜀-events in which the geodesic is
a single line segment. We now bound the number of 𝜀-events for which the
geodesic contains an obstacle vertex 𝑣 by 𝑂(𝜏𝑛2). The lemma then follows.
Fix two entities 𝑎 and 𝑏. Each trajectory edge intersects the 𝜀-disk centered
at 𝑣 at most once. Hence, there are 𝑂(𝜏) time intervals during which both 𝑎
and 𝑏 move along a line, and are within distance 𝜀 from 𝑣. Clearly, all 𝜀-events
involving 𝑎 and 𝑏 occur within one of these intervals. Since the obstacles are
well-spaced, the 𝜀-disk contains at most three edges: the two edges connected
to 𝑣 and at most one edge adjacent to both these edges. It follows that the
function 𝜍u�u� consists of at most 𝑂(1) pieces during such an interval. Hence,
there can be at most a constant number of 𝜀-events per interval.
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Figure 6.4: The u�-disk u� (red) centered at u� subdivided
into six wedges. The distance between any pair of points
u� and u� in the same wedge is at most u�.

Next, we show that the number of critical events can be only 𝑂(𝜏(𝑛2 +
𝑚𝜆4(𝑛))). Clearly, the number of critical events at which the geodesic is a
single line segment is also at most 𝑂(𝜏𝑛2) (Observation 6.7). We now bound
the number of critical events where two sets of entities become 𝜀-connected or
𝜀-disconnected, and the geodesic between them consists of two line segments,
connected via an obstacle vertex 𝑣.

Let 𝒟 be the disk of radius 𝜀 centered at 𝑣, and consider a subdivision of 𝒟
into six equal-size sectors or wedges. See Figure 6.4. We make sure that the
obstacle containing 𝑣 intersects at least two wedges. Let 𝑊 be a wedge. For any
pair of points 𝑝 and 𝑞 in 𝑊, the Euclidean distance between 𝑝 and 𝑞 is at most 𝜀.
Let ℰu�(𝑡) ⊆ ℰ denote the set of entities that lie in 𝑊 at time 𝑡.

▶ Observation 6.9. At any time 𝑡, there is at most one maximal set of 𝜀-connected
entities 𝐺 that has entities in wedge 𝑊, that is, for which 𝐺 ∩ ℰu�(𝑡) ≠ ∅.

▶ Corollary 6.10. At any time 𝑡, there is at most one maximal set of 𝜀-connected
entities 𝐺 such that ℰu�(𝑡) ⊆ 𝐺.

When two maximal sets of 𝜀-connected entities ℰu� and ℰu� become 𝜀-con-
nected or 𝜀-disconnected at time 𝑡 via vertex 𝑣, then the entities 𝑟 ∈ ℰu� and
𝑏 ∈ ℰu� that form their closest pair must both lie in 𝒟 at time 𝑡. More specifically,
since the geodesic between 𝑟 and 𝑏 uses vertex 𝑣, 𝑟 and 𝑏 must lie in different
wedges. Let 𝑅 and 𝐵 denote the wedges that contain 𝑟 and 𝑏, respectively. We
now show that the total number of critical events involving entities in wedges 𝑅
and 𝐵 is 𝑂(𝜏𝜆4(𝑛)). By Corollary 6.10 it then follows that each such event cor-
responds to exactly one pair of 𝜀-connected sets. Since there are only (6

2) = 15
pairs of wedges, there are also at most 𝑂(𝜏𝜆4(𝑛)) times when two maximal sets
of 𝜀-connected entities are at distance exactly 𝜀 and are connected via vertex 𝑣.

▶ Lemma 6.11. The total number of critical events involving entities in wedges 𝑅
and 𝐵 is 𝑂(𝜏𝜆4(𝑛)).

Proof. Given an entity 𝑎 ∈ ℰ we define two partial functions 𝜚u� and 𝛽u� as
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Figure 6.5: (a) A set of
entities. (b) The corre-
sponding sets of par-
tial functions ℛ (red)
and ℬ (blue). Critical
events correspond to
intersections between
the lower envelope of
ℛ and the upper enve-
lope of ℬ.
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follows:

𝜚u�(𝑡) =
⎧{
⎨{⎩

𝜉u�u�(𝑡) − 𝜀/2 if 𝑎 ∈ ℰu�(𝑡)
⊥ otherwise,

𝛽u�(𝑡) =
⎧{
⎨{⎩

−𝜉u�u�(𝑡) + 𝜀/2 if 𝑎 ∈ ℰu�(𝑡)
⊥ otherwise,

where ⊥ denotes undefined. Furthermore, let ℛ = {𝜚u� ∣ 𝑟 ∈ ℰ} and ℬ = {𝛽u� ∣
𝑏 ∈ ℰ}. See Figure 6.5. It now follows that for any two entities 𝑟 ∈ ℰu�(𝑡) and
𝑏 ∈ ℰu�(𝑡) the length of the path from 𝑟 via 𝑣 to 𝑏 is 𝜀 if and only if 𝜚u�(𝑡) = 𝛽u�(𝑡).
Thus, the number of times entities in 𝑅 become 𝜀-connected or 𝜀-disconnected
via vertex 𝑣 is at most the number of intersection points between the lower
envelope of ℛ and the upper envelope of ℬ. Next, we show that this number
of intersection points is at most 𝑂(𝜏𝜆4(𝑛)).

Each trajectory consists of 𝜏 − 1 edges, each of which intersects wedge 𝑅 in
a single line segment. Hence, for each entity 𝑎, the function 𝜚u� is defined on
at most 𝜏 − 1 maximal contiguous intervals 𝐼1

u� , .., 𝐼u�−1
u� . Thus, by Lemma 6.1

the lower envelope ℒ of ℛ has complexity at most 𝑂(𝜏𝜆4(𝑛)). Similarly, the
upper envelope 𝒰 of ℬ has complexity 𝑂(𝜏𝜆4(𝑛)). It follows that there are also
𝑂(𝜏𝜆4(𝑛)) time intervals such that both ℒ and 𝒰 are represented by a simple
hyperbolic function. In each such interval ℒ and 𝒰 intersect each other at most
twice. Hence, the total number of intersection points is 𝑂(𝜏𝜆4(𝑛)).

It now follows that the total number of critical events at which the geodesic
contains an obstacle vertex is 𝑂(𝑚𝜏𝜆4(𝑛)). We conclude:

▶ Theorem 6.12. Let ℰ be a set of 𝑛 entities, each moving amidst a set of well-spaced
obstacles

𝒬
along a piecewise linear trajectory with 𝜏 vertices. The number of critical

events is at most 𝑂(𝜏(𝑛2 + 𝑚𝜆4(𝑛))), where 𝑚 is the total complexity of
𝒬

.
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6.3.3 Algorithm
We now show how to compute the Reeb graph ℛ in case the entities move
amidst well-spaced obstacles. At first glance, it seems that we can compute
all critical events using the same approach as used in the upper bound proof.
Indeed, this allows us to find all times at which critical events occur. However,
to construct the Reeb graph we also need to know the sets of entities involved at
each critical event, e.g. we want to know that a set ℰ′ splits into subsets 𝑅 and 𝐵.
Unfortunately, there does not seem to be an efficient, i.e. sub-linear, way to ob-
tain this information, nor can we easily maintain the 𝜀-connected sets of entities
without considering all 𝜀-events. It is easy to compute all 𝜀-events in 𝑂(𝜏𝑛2𝑚)
time, using the approach described in Lemma 6.8. Once we have computed all
𝜀-events, we can construct the Reeb graph using the same method as before
(Theorem 5.7). This takes 𝑂(log 𝑛) time per 𝜀-event. Thus, we conclude:

▶ Theorem 6.13. Let ℰ be a set of 𝑛 entities, each moving amidst a set of well-spaced
obstacles

𝒬
along a piecewise linear trajectory with 𝜏 vertices. The Reeb graph ℛ

representing the movement of the entities in ℰ has size 𝑂(𝜏(𝑛2 + 𝑚𝜆4(𝑛))) and can
be computed in 𝑂(𝜏𝑛2𝑚 log 𝑛) time, where 𝑚 is the total complexity of

𝒬
.

6.4 General Obstacles
Finally, we study the most general case in which the entities move amidst
multiple obstacles, and there are no restrictions on the locations, shape, or size
of the obstacles.

6.4.1 Lower Bound
▶ Lemma 6.14. The total number of critical events for a set of 𝑛 entities, each
moving amidst a set of obstacles

𝒬
along a piecewise linear trajectory with 𝜏 vertices,

is Ω(𝜏(𝑛2 + 𝑛𝑚 min{𝑛, 𝑚})), where 𝑚 is the total complexity of
𝒬

.

Proof. We describe a construction in which the entities move along lines that
yields Ω(𝑛𝑚𝑘) critical events, with 𝑘 = min{𝑛, 𝑚}. We again repeat this con-
struction Ω(𝜏) times.

The basic idea is to create Ω(𝑘) stationary entities, Ω(𝑛) moving entities, and
Ω(𝑚) “entrances” from which a moving entity can become connected with
a stationary entity. Each stationary entity is surrounded by an obstacle. The
distance from such a stationary entity 𝑠 to an entrance leading to 𝑠, will be
approximately 𝜀. So an entity gets 𝜀-connected with 𝑠 only if it is directly in
front of the entrance. We make sure that each stationary entity is reachable
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Figure 6.6: The lower bound construction for general obstacles. (a) Constructing the passages through
obstacle u�. (b) The final construction.

from all entrances. Hence, each time that one of the Ω(𝑛) moving entities
passes an entrance it will generate Ω(𝑘) critical events. Since all Ω(𝑛) moving
entities encounter all Ω(𝑚) entrances we get at least Ω(𝑛𝑚𝑘) critical events.

Let 𝑐 be a point in the plane, let 𝛿 > 0 be a small value, and let 𝑃 be a set of
Ω(𝑘) points on the lower half of the circle with center 𝑐 and radius 𝜀/2 + 𝛿. We
place a large rectangular obstacle 𝒪 containing 𝑐 and all points in 𝑃 such that
the (shortest) distance from 𝑐 to the top side ℎ of 𝒪 is smaller than 𝜀/2 − 𝛿.

We now carve Ω(𝑘 + 𝑚) passages through 𝒪. The first 𝑘′ = Ω(𝑘) connect 𝑐
to each point in 𝑃. The remaining 𝑚′ = Ω(𝑚) connect 𝑐 to the top side ℎ of the
obstacle 𝒪. The first 𝑘′ passages all have length exactly 𝜀/2 + 𝛿, and we make
sure that the remaining 𝑚′ passages all have length exactly 𝜀/2 − 𝛿. We can do
this with at most one bend in each passage. See Figure 6.6(a). The distance
from any point in 𝑃 to the top side ℎ of 𝒪, via any of the 𝑚′ passages, is now 𝜀,
and the distance between any two points in 𝑃 is strictly larger than 𝜀.

We place a stationary entity on each point in 𝑃, and we let Ω(𝑛) entities move
from left to right on a horizontal line ℓ containing ℎ (we can move ℓ upwards a
bit later to make sure the entities do not intersect the obstacle). We make sure
that at any time the distance between two of these moving entities is larger
than 𝜀, so they are never in the same 𝜀-connected set. When an entity 𝑒 arrives
at an entrance, that is, an opening of one of the top passages, it is at distance
𝜀 to the points in 𝑃. Hence, we have a critical event where 𝑒 connects with all
entities at points in 𝑃. We can make sure that 𝑒 generates an event with (the
entity on) each point in 𝑃 by moving each point in 𝑃 by a small unique amount
towards 𝑐. Figure 6.6(b) shows the resulting construction.
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6.4.2 Upper Bound
We again start by bounding the total number of 𝜀-events.

▶ Lemma 6.15. Let ℰ be a set of 𝑛 entities, each moving amidst a set of obstacles
𝒬

along a piecewise linear trajectory with 𝜏 vertices. The number of 𝜀-events is at most
𝑂(𝜏𝑛2𝑚2), where 𝑚 is the total complexity of

𝒬
.

Proof. As before, there are 𝑂(𝜏𝑛2) 𝜀-events for which the geodesic consists of
a single line segment. We proceed to bound the number of 𝜀-events for which
the geodesic contains an obstacle vertex 𝑣.

Consider the shortest path map Ψ with starting point 𝑣: a planar subdivision
such that all points in a region of Ψ have the same combinatorial geodesic to
𝑣 [68]. This subdivision has complexity 𝑂(𝑚), and its edges are either line
segments or hyperbolic arcs. It follows that any line intersects at most 𝑂(𝑚)
edges of Ψ, and thus visits at most 𝑂(𝑚) regions of Ψ. Therefore, each entity 𝑎
visits at most 𝑂(𝜏𝑚) regions. The geodesic distance between 𝑎, moving along
a line segment in a region 𝑅 of Ψ, and 𝑣 is a simple hyperbolic function.

Fix a pair of entities 𝑎 and 𝑏. There are 𝑂(𝜏𝑚) time intervals such that 𝑎 moves
along a line in region 𝑅u� of Ψ and 𝑏 moves along a line in region 𝑅u�. During
such an interval the distance between 𝑎 and 𝑏 via 𝑣 is a simple function. Hence,
there can be at most two times in each interval such that 𝜍u�u�(𝑡) + 𝜍u�u�(𝑡) = 𝜀.
Thus, the total number of times such that the distance between 𝑎 and 𝑏 via an
obstacle vertex is exactly 𝜀 is 𝑂(𝜏𝑚2). It follows that the number of 𝜀-events
involving 𝑎 and 𝑏 is then also at most 𝑂(𝜏𝑚2). The lemma follows.

As in the case of well-spaced obstacles not all of these 𝜀-events can be critical
events. We now fix an obstacle vertex 𝑣, and show that there are at most
𝑂(𝜏𝑚2𝜆4(𝑛)) critical events involving 𝑣. To this end, we again decompose the
(geodesic) 𝜀-disk centered at 𝑣 into regions such that each region corresponds
to at most one maximal set of 𝜀-connected entities. Each critical event involving
𝑣 also involves two maximal 𝜀-connected sets, and thus two regions in this
decomposition. We show that we have to consider only 𝑂(𝑚) pairs of such
regions, and that for each pair there can be at most 𝑂(𝜏𝑚𝜆4(𝑛)) critical events.
Since we have 𝑂(𝑚) obstacle vertices this gives us a total bound of 𝑂(𝜏𝑚3𝜆4(𝑛)).
Finally, we show that by counting only the critical events where 𝑣 is the first
vertex on the geodesic we can reduce this number to 𝑂(𝜏𝑚2𝜆4(𝑛)), which is
close to optimal if 𝑛 and 𝑚 are in the same order of magnitude.

Let 𝒟u� denote the geodesic 𝜀-disk centered at 𝑣, and let 𝒟u�/2 denote the
geodesic (𝜀/2)-disk centered at 𝑣. Clearly, the geodesic distance between any
two points in 𝒟u�/2 is at most 𝜀, thus we observe:
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Figure 6.7: Subdivision Φ. The color
of the edge indicates its type: the
red edges originate from shortest
paths, the purple and blue edges
from the shortest path map, the
cyan edges from the subdivision in
“triangular sectors”, the light green
edges guarantee that the maximum
angle at the routing point is at most
u�/12, and the pink edges guaran-
tee monotonicity.
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▶ Observation 6.16. At any time 𝑡 there is at most one maximal 𝜀-connected set of
entities 𝐺 such that 𝐺u�u�/2(𝑡) ≠ ∅, and thus ℰu�u�/2(𝑡) ⊆ 𝐺.

Let 𝒜 = 𝒟u� ⧵ 𝒟u�/2. We decompose 𝒜 into 𝑂(𝑚) regions such that for each
region 𝑅 we have that
(i) the geodesic distance between two points 𝑝, 𝑞 ∈ 𝑅 is at most 𝜀,
(ii) any two points 𝑝, 𝑞 ∈ 𝑅 have the same (combinatorial) geodesic to 𝑣, and
(iii) the boundary of 𝑅 has constant complexity.

Let Φ denote this decomposition of 𝒜. It follows that at any time, each
region 𝑅 in Φ contains entities from at most one maximal 𝜀-connected set 𝐺.
That is, ℰu�(𝑡) ⊆ 𝐺. It is now easy to see that any critical event involving 𝑣
involves the maximal set of 𝜀-connected entities 𝐺u�/2 corresponding to 𝒟u�/2,
and a maximal set of 𝜀-connected entities 𝐺u� corresponding to a region 𝑅 of
Φ. Hence, there are only 𝑂(𝑚) pairs of regions that can be associated with a
critical event involving 𝑣. We now show how to construct Φ, and how to bound
the number of events corresponding to a single pair of regions.

Obtaining subdivision Φ. Let Φ′ be the overlay of the shortest path map with
root 𝑣 (restricted to 𝒟u�), and all shortest paths from 𝑣 to obstacle vertices in 𝒟u�.
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Figure 6.8: If u� is a shortest path from u� to u� it
cannot intersect an edge u� of the shortest path
map.

▶ Lemma 6.17. Φ′ has complexity 𝑂(𝑚).

Proof. The shortest path map ℳ with root 𝑣 has complexity 𝑂(𝑚), and the
shortest paths to obstacle vertices form a rooted tree 𝑇 (with root 𝑣) of size
𝑂(𝑚) [68]. We now show that the edges of 𝑇 and ℳ intersect each other only
at obstacle vertices. It then follows that the complexity of their overlay is also
𝑂(𝑚).

Consider the shortest path 𝑃 from obstacle vertex 𝑞 to 𝑣, and assume by
contradiction that this path intersects an edge 𝑒 of ℳ in point 𝑝. It follows that
𝑒 is a (weighted) bisector for the obstacle vertices 𝑢 and 𝑤, that is, for any point
on 𝑒 —so in particular for point 𝑝— there are two shortest paths to 𝑣, one via 𝑢
and one via 𝑤. See Figure 6.8. Assume without loss of generality that 𝑃 is the
path via 𝑢, and let 𝑃′ be the other path via 𝑤. Path 𝑃′ is a shortest path with
a vertex at 𝑝. It is easy to show that any shortest path contains only obstacle
vertices (except for its endpoints), and that any path with a non-obstacle vertex
(i.e. a vertex where the path just bends) cannot be a shortest path. It follows
that 𝑃′ is not a shortest path. Since 𝑃 has the same length as 𝑃′ it cannot be a
shortest path either. Contradiction.

The edges of Φ′ are either line segments or hyperbolic arcs [68]. Since Φ′

is a refinement of the shortest path map, all points in a region 𝑅 in Φ′ have
the same geodesic 𝑔 to 𝑣 (except for the starting edge). Hence, each region 𝑅 is
star-shaped, and has a vertex 𝑐 that lies inside its kernel. This vertex 𝑐 is the
second vertex on each geodesic 𝑔. We refer to 𝑐 as the routing point of 𝑅.

Next, we further subdivide each region 𝑅 in Φ′. We add edges 𝑐𝑢 between the
routing point 𝑐 and all boundary vertices 𝑢 of 𝑅. Each region is now bounded
by two line segments 𝑐𝑢 and 𝑐𝑤 and a segment 𝑐𝑤. This segment 𝑐𝑤 is either
a line segment, or a hyperbolic arc. We further add edges 𝑐𝑧 between 𝑐 and
points 𝑧 on 𝑐𝑤 such that the angle at 𝑐 is at most 𝜃 = 𝜋/12. In case 𝑐𝑤 is a
hyperbolic arc we make sure that the hyperbolic function describing this arc
is monotonic. To this end, we add at most one additional edge 𝑐𝑧 to the point
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Figure 6.9: (a) When u� ∈ u�, region u� is contained in a sector with radius u�/2 and angle u� = u�/12 at
u�. (b) When u� does not lie in u�, the sector containing u� has height ℎ.

𝑧 on 𝑐𝑤 with maximum curvature. All these new edges are contained in 𝑅
and do not intersect each other. It follows that the total complexity, summed
over all regions in the subdivision, is still 𝑂(𝑚). Let Φ denote the resulting
subdivision, restricted to 𝒜. See Figure 6.7.

▶ Lemma 6.18. Let 𝑅 be a region in Φ. For any two points 𝑝, 𝑞 ∈ 𝑅 the Euclidean
distance ‖𝑝𝑞‖ between 𝑝 and 𝑞 is at most 𝜀√29/4 − 4√3.

Proof. Let 𝑐 denote the routing point of 𝑅. We distinguish two cases, depending
on whether or not 𝑐 lies in 𝒜.

Consider the case 𝑐 ∈ 𝒜. Since 𝑐 is the second vertex on the shortest path
from any point 𝑝 in 𝑅 to 𝑣, and 𝑐 ∉ 𝐷u�/2, the distance from 𝑝 to 𝑐 is at most 𝜀/2.
It follows that 𝑅 is contained in a circular sector with its apex at 𝑐, radius 𝜀/2,
and angle 𝜃 = 𝜋/12. Simple trigonometry shows that the Euclidean distance
between any pair of points in such a sector, and thus in 𝑅, is at most 𝜀/2.

Consider the case 𝑐 ∉ 𝒜. Similar to the previous case, we get that 𝑅 is
contained in a circular sector with its apex at 𝑐, radius 𝜀, and angle 𝜋/12. The
height ℎ of this sector (see Figure 6.9) is at most 𝜀 tan(𝜋/12) ≤ 𝜀(2−√3). To show
that the distance between a pair of points 𝑝 and 𝑞 in 𝑅 is at most 𝜀 we rotate 𝑅 and
the sector containing 𝑅 around 𝑐 until 𝑐𝑝 is horizontal. Since 𝑅 ⊆ 𝒜 it follows
that the 𝑥-component of ‖𝑝𝑞‖ is at most 𝑤 ≤ 𝜀/2. The 𝑦-component is bounded
by ℎ. Thus, we have ‖𝑝𝑞‖ ≤ √𝑤2 + ℎ2 ≤ 𝜀√29/4 + 4√3. This completes the
proof.

▶ Lemma 6.19. Let 𝑅 be a region in Φ. For any two points 𝑝, 𝑞 ∈ 𝑅 the geodesic
distance 𝜍(𝑝, 𝑞) = 𝜍(𝑔(𝑝, 𝑞)) between 𝑝 and 𝑞 is at most 𝜀.

Proof. Let 𝑝 and 𝑞 be a pair of points in 𝑅. If 𝑔(𝑝, 𝑞) = 𝑝𝑞 then we have
𝜍(𝑝, 𝑞) = ‖𝑝𝑞‖ ≤ 𝜀√29/4 − 4√3 ≤ 𝜀 by Lemma 6.18. Otherwise, 𝑝𝑞 intersects
an obstacle, and thus a concave part of the boundary of 𝑅. If we follow the
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boundary of 𝑅 we encounter, in order, a line segment 𝑎𝑢, a segment 𝑢𝑤, a line
segment 𝑤𝑏, and possibly a part 𝑎𝑏 of the boundary of 𝐷u�/2 connecting 𝑏 to 𝑎.
If 𝑎𝑏 is empty then 𝑎 = 𝑏 = 𝑐, where 𝑐 is the routing point of 𝑅. The routing
point 𝑐 is the second vertex on all shortest paths from points in 𝑅 to 𝑣. Hence,
the area bounded by 𝑐𝑎, 𝑎𝑏, and 𝑏𝑐 is empty of obstacles. It follows that 𝑔(𝑝, 𝑞)
intersects 𝑢𝑤.

By construction, segment 𝑢𝑤 is described by a monotonic hyperbolic function.
Since this function is monotonic, it follows that the dilation of 𝑢𝑤 is at most
√2. That is, for any pair of points 𝑟 and 𝑠 on 𝑢𝑤, the length of the curve 𝑟𝑠 is at
most ‖𝑟𝑠‖√2. Combining this with the result from Lemma 6.18 it follows that
𝑔(𝑝, 𝑞) has length at most 𝜀√29/4 − 4√3√2 ≤ 𝜀.

▶ Lemma 6.20. Subdivision Φ has complexity 𝑂(𝑚) and each region 𝑅 ∈ Φ has
the following properties:

(i) the geodesic distance between two points 𝑝, 𝑞 ∈ 𝑅 is at most 𝜀,
(ii) any two points 𝑝, 𝑞 ∈ 𝑅 have the same geodesic to 𝑣 (excluding the starting

edge), and
(iii) the boundary of 𝑅 has constant complexity.

Proof. Property (i) follows directly from Lemma 6.19, and Property (ii) follows
from the fact that Φ is a refinement of the shortest path map. Each region is
bounded by three or four segments, depending if the routing point 𝑐 lies in
𝒜 or not. If 𝑐 ∈ 𝒜, region 𝑅 is bounded by three segments. Otherwise, 𝑅 is
bounded by three segments and a part of 𝐷u�/2. However, as all shortest paths
from points in 𝑅 to 𝑣 use point 𝑐, it follows that this part of 𝐷u�/2 is also a single
hyperbolic segment. This proves Property (iii).

Bounding the number of critical events for a pair of regions. Next, we fix
a region 𝑅 in Φ, and show that the number of critical events involving 𝑣, 𝑅, and
𝐷u�/2, is at most 𝑂(𝜏𝜆4(𝑛)).

▶ Lemma 6.21. Let 𝑅 be any region of Φ, and let 𝐺u� be the maximal set of 𝜀-connected
entities corresponding to 𝑅. The (geodesic) distance between 𝐺u� and 𝑣 is given by a
piecewise hyperbolic function with 𝑂(𝜏𝜆4(𝑛)) pieces.

Proof. The boundary of 𝑅 has constant complexity, so each entity in 𝐺u� inter-
sects region 𝑅 in 𝑂(𝜏) time-intervals. Furthermore, all points in 𝑅 have the
same combinatorial geodesic, so during any such an interval, the distance to 𝑣
is given by a simple hyperbolic function. Thus, the distance function between
𝐺u� and 𝑣 corresponds to the lower envelope of a set of hyperbolic functions.
Lemma 6.1 now completes the proof.
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Fix a region 𝑅, let

𝛽u�(𝑡) =
⎧{
⎨{⎩

−𝜍(𝑎(𝑡), 𝑣) + 𝜀 if 𝑎(𝑡) ∈ 𝑅
⊥ otherwise,

and let 𝒰 be the upper envelope of {𝛽u�(𝑡) ∣ 𝑎 ∈ ℰ}. It follows from Lemma 6.21
that 𝒰 has complexity 𝑂(𝜏𝜆4(𝑛)).

Now consider the entities in the inner region 𝒟u�/2. The function 𝜍u�u� ex-
pressing the geodesic distance between 𝑎 and 𝑣 is piecewise hyperbolic and
consists of 𝑂(𝑚𝜏) pieces. Let ℒ denote the lower envelope of all functions 𝜚u�,
𝑎 ∈ ℰ, where 𝜚u�(𝑡) = 𝜍u�u�(𝑡) if 𝜍u�u�(𝑡) ≤ 𝜀/2 and ⊥ otherwise. It follows from
Lemma 6.1 that ℒ has complexity 𝑂(𝑚𝜏𝜆4(𝑛)).

As with the well-spaced obstacles, all critical events in which the entities
involved lie in 𝒟u�/2 and 𝑅 at the time of the event correspond to intersections
of ℒ and 𝒰. To bound the number of intersections, and thus the number of
critical events, we now (again) partition the domain of ℒ and 𝒰 (i.e., time)
into sets 𝐷1, .., 𝐷u� such that in each 𝐷u� the lower envelope ℒ and the upper
envelope 𝒰 intersect at most twice. It is easy to partition the domain into
𝑘 = 𝑂(|ℒ| + |𝒰|) = 𝑂(𝜏𝜆4(𝑛) + 𝑚𝜏𝜆4(𝑛)) = 𝑂(𝑚𝜏𝜆4(𝑛)) intervals with this
property. Hence, we get 𝑂(𝑚𝜏𝜆4(𝑛)) critical events involving vertex 𝑣 and the
pair of regions (𝑅, 𝒟u�/2). This gives a total of 𝑂(𝑚3𝜏𝜆4(𝑛)) critical events.

Counting critical events where 𝑣 is the first vertex on the geodesic. The
above argument over-counts the number of critical events; a critical event is
counted for all vertices on the geodesic. To avoid this, we charge a critical event
to an obstacle vertex 𝑣 only if it is the first vertex on the geodesic (now each
critical event is counted at most twice). In terms of the intersections between
ℒ and 𝒰 this means that we wish to count the intersection only if it lies on a
piece of ℒ corresponding to the Euclidean distance between 𝐺u�/2 and 𝑣.

We will use the same global approach as before. However, we use a different
partition of the domain of ℒ and 𝒰. We will show that we can partition the
domain into 𝑂(𝜏𝜆4(𝑛)) sets, such that in each set there are at most two times,
𝑡1 and 𝑡2, such that ℒ intersects 𝒰, and ℒ(𝑡u�) is the Euclidean distance between
𝐺u�/2 and 𝑣. Thus, the number of critical events involving the pair of regions
𝒟u�/2 and 𝑅, and such that 𝑣 is the first vertex on the geodesic is 𝑂(𝜏𝜆4(𝑛)).
Since we have 𝑂(𝑚) pairs of regions and 𝑚 obstacle vertices this gives a total
of 𝑂(𝑚2𝜏𝜆4(𝑛)) critical events as desired.

Let 𝑎 be an entity, and let 𝜉 u�
u�u� be the 𝑖th piece of function 𝜉u�u� expressing the

Euclidean distance between 𝑎 and 𝑣. We define

ℒu�
u�(𝑡) =

⎧{
⎨{⎩

ℒ(𝑡) if ℒ(𝑡) = 𝜚u�(𝑡) = 𝜉 u�
u�u�(𝑡)

⊥ otherwise.
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Figure 6.10: The lower envelope ℒ (purple) of two geodesic distance functions u�u� (red) and u�u� (blue).
We have ℒu�

u�(u�) = ℒ(u�) if ℒ(u�) lies on the u�th piece of the Euclidean distance function u�u�u�. These
functions ℒu�

u� consist of multiple disjoint pieces, as indicated by the colored time intervals.

The function ℒu�
u� is defined at time 𝑡 if and only if the lower envelope ℒ uses

the 𝑖th piece of 𝜉 u�
u�u�. That is, when the distance between 𝑣 and 𝐺u�/2 is the

Euclidean distance between 𝑣 and entity 𝑎, and 𝑎 is traveling along the 𝑖th edge
of its trajectory. Note that ℒu�

u� may consist of several disjoint pieces of ℒ. See
Figure 6.10. We are now interested in the number of intersection points between
all functions ℒu�

u� and 𝒰.
Any piece 𝜉 u�

u�u� can intersect a single piece of 𝒰 at most twice. Since for any
𝑡 ∈ dom(ℒu�

u�), ℒu�
u�(𝑡) = 𝜉 u�

u�u�(𝑡), the same applies for ℒu�
u�. So even though ℒu�

u� can
consist of many pieces, together they intersect a single piece of 𝒰 at most twice.

We have 𝑂(𝜏𝑛) functions ℒu�
u�. We split the domain 𝐷u�

u� = dom(ℒu�
u�) into two

sets if 𝒰 has a break point. Let 𝐷1, .., 𝐷u� denote the resulting sets. Since every
break point of 𝒰 creates one additional set, we have that 𝑘 = 𝑂(𝜏𝑛 + 𝜏𝜆4(𝑛)) =
𝑂(𝜏𝜆4(𝑛)). In each of these sets ℒ and 𝒰 intersect at most twice, and together
they include all intersection points where ℒ correspond to the Euclidean dis-
tance between 𝑣 and 𝐺u�/2. Hence, the total number of intersections, and there-
fore also the number of critical events, is at most 𝑂(𝜏𝜆4(𝑛)). We thus obtain
the following result:

▶ Theorem 6.22. Let ℰ be a set of 𝑛 entities, each moving amidst a set of obstacles𝒬
along a piecewise linear trajectory with 𝜏 vertices. The number of critical events is

at most 𝑂(𝜏(𝑛2 + 𝑚2𝜆4(𝑛))), where 𝑚 is the total complexity of
𝒬

.
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6.4.3 Algorithm
We again explicitly compute all 𝜀-events in order to construct the Reeb graph ℛ.
We follow the approach from Lemma 6.15. That is, we compute the shortest path
map Ψ with root 𝑣, and for each pair of entities 𝑎 and 𝑏 we trace their trajectories
through Ψ. For each of the 𝑂(𝜏𝑚) pairs of regions visited, we construct 𝜍u�u�
and find the 𝜀-events. Computing the shortest path map with root 𝑣 takes
𝑂(𝑚 log 𝑚) time [68]. Tracing the trajectories and computing the distance
functions takes time proportional to the number of regions visited. Hence,
we spend 𝑂(𝜏𝑚) time for each pair. It follows that the total time required
to compute all 𝜀-events is 𝑂(𝑚(𝑚 log 𝑚 + 𝑛2𝜏𝑚)) = 𝑂(𝜏𝑛2𝑚2 + 𝑚2 log 𝑚).
Computing ℛ again takes 𝑂(log 𝑛) time per 𝜀-event. We obtain the following
result.

▶ Theorem 6.23. Let ℰ be a set of 𝑛 entities, each moving amidst a set of obstacles𝒬
along a piecewise linear trajectory with 𝜏 vertices. The Reeb graph ℛ representing

the movement of the entities in ℰ has size 𝑂(𝜏(𝑛2 + 𝑚2𝜆4(𝑛))) and can be computed
in 𝑂(𝜏𝑛2𝑚2 log 𝑛 + 𝑚2 log 𝑚) time, where 𝑚 is the total complexity of

𝒬
.

6.5 Concluding Remarks
We studied the trajectory grouping structure for entities moving amidst obsta-
cles. To this end, we analyzed the number of times when two sets of entities
are at distance 𝜀 from each other. Our results for various types of obstacles can
be found in Table 6.1. These bounds on the number of critical events also give
a bound on the size of the Reeb graph ℛ. This in turn gives bounds on the
number of maximal groups: if the Reeb graph has size 𝑂(|ℛ|) there are 𝑂(|ℛ|𝑛)
maximal groups. Furthermore, we presented efficient algorithms to compute
ℛ, which leads to efficient algorithms to compute the grouping structure.

The most intriguing open question is whether the Reeb graph can be con-
structed using only the critical events, that is, in an output-sensitive manner.
The difficulty with the approach that we use appears to be that one would need
a dynamic data structure for maintaining a subdivision of a set (the groups),
that supports efficient split and merge operations. Thus, there may be funda-
mental graph-theoretical obstacles to this approach. However, it is not clear
that this is the only possible approach to compute ℛ.

An interesting direction of future work is to extend the grouping structure
for entities moving in more realistic environments, for instance modeled by
weighted regions. This starts with interesting modeling questions since dis-
tances are related to the speed of the entities. For example: should the distance
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for two entities, say sheep, to be directly connected be larger on a muddy field
than it is on a concrete courtyard, or do the sheep need to be closer together in
the field to be considered a group?

Although we developed the technical machinery presented here with the goal
of extending the trajectory grouping structure, we foresee wider applications
for our techniques. We believe our work will serve as a starting point for more
general research related to moving entities and geodesic distances. For example,
we can consider trajectory similarity measures in the presence of obstacles.



Central Trajectories

Chapter7
In this chapter we study the problem of computing a suitable representative

for a set of similar trajectories. The representative should capture the defining
features of all trajectories in the input set. We introduce a time-dependent rep-
resentative, a representative that includes the spatial as well as the temporal
component of the trajectories, and present efficient algorithms to compute such
a representative. Our representative, a central trajectory ℭ, consists of pieces of
the input trajectories and switches from one entity to another only if they are
within a small distance of each other. Furthermore, at any time 𝑡, the point ℭ(𝑡)
is as central as possible. We measure centrality in terms of the radius of the
smallest disk centered at ℭ(𝑡) enclosing all entities at time 𝑡, but we discuss
how our techniques can be adapted to other measures of centrality.

Ideally, we would output a trajectory ℭ such that at any time 𝑡, ℭ(𝑡) is the point
(entity) that is closest to its farthest entity. Unfortunately, when the entities
move in ℝu� for 𝑑 > 1, this may cause discontinuities. Such discontinuities are
unavoidable: if we insist that the output trajectory consists of pieces of input
trajectories and is continuous, then in general, there will be no opportunities
to switch from one trajectory to another. Thus, we are effectively choosing
one of the input trajectories. This is undesirable, as no individual trajectory
may be a good representative. At the same time, we do not want to output a
trajectory with arbitrarily large discontinuities. An acceptable compromise is
to allow discontinuities, or jumps, but only over small distances, controlled by
a parameter 𝜀.

Problem description. We are given a set ℰ of 𝑛 entities, each moving along
a piecewise-linear trajectory in ℝu� consisting of 𝜏 edges. We assume that all
trajectories have their vertices at the same times, i.e. times 𝑡0, .., 𝑡u� .

Consider a pair of entities 𝑎, 𝑏 ∈ ℰ, and recall that 𝜉u�u�(𝑡) = ‖𝑎(𝑡)𝑏(𝑡)‖ is the
distance between 𝑎 and 𝑏 at time 𝑡. We denote the distance from 𝑎 to the entity
farthest away from 𝑎 by Ξu�(𝑡) = Ξ(𝑎, 𝑡) = maxu�∈ℰ 𝜉u�u�(𝑡). Figure 7.1 shows
five example trajectories, and illustrates the pairwise distances and resulting
Ξ functions for these trajectories. For ease of exposition, we assume that the
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(a)

ε

(b)

(c)

Figure 7.1: (a) Two views of five moving entities and their trajectories. (b) The pairwise distances
between the entities as a function over time. (c) The functions Ξu�, and in yellow the area representing
Ψ(ℭ), the quantity that we wish to minimize.

trajectories are in general position: that is, no three trajectories intersect in the
same point, and no two pairs of entities are at distance 𝜀 from each other at the
same time.

A trajectoid is a function that maps time to the set of entities ℰ, with the
restriction that at discontinuities the distance between the entities involved is
at most 𝜀. Intuitively, a trajectoid corresponds to a concatenation of pieces of
the input trajectories in such a way that two consecutive pieces match up in
time, and the end point of the former piece is within distance 𝜀 from the start
point of the latter piece. In Figure 7.1(b), a trajectoid may switch between a
pair of entities when their pairwise distance function lies in the bottom strip of
height 𝜀. More formally, for a trajectoid 𝔗 we have that

• at any time 𝑡, 𝔗(𝑡) = 𝑎 for some 𝑎 ∈ ℰ, and
• at every time 𝑡 where 𝔗 has a discontinuity, that is, 𝔗 jumps from entity 𝑎

to entity 𝑏, we have that 𝜉u�u�(𝑡) ≤ 𝜀.
Note that this definition still allows for a series of jumps within an arbitrarily
short time interval [𝑡, 𝑡 + 𝛿], essentially simulating a jump over distances larger
than 𝜀. To make the formulation cleaner, we slightly weaken the second condi-
tion, and allow a trajectoid to have discontinuities with a distance larger than 𝜀,
provided that such a large jump can be realized by a sequence of small jumps,
each of distance at most 𝜀. When it is clear from the context, we will write 𝔗(𝑡)
instead of 𝔗(𝑡)(𝑡) to mean the location of entity 𝔗(𝑡) at time 𝑡. We now wish to
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(a) (b)

Figure 7.2: (a) A set of trajectories and the ideal trajectory ℐ. The breakpoints in the ideal trajectory
partition time into u�(u�u�) intervals. (b) The trajectories after transforming ℐ to a horizontal line.

compute a trajectoid ℭ that minimizes the function

Ψ(𝔗) = ∫
u�u�

u�0
Ξ(𝔗, 𝑡) d𝑡.

So, at any time 𝑡, all entities lie in a disk of radius Ξ(ℭ, 𝑡) centered at ℭ(𝑡).

Results and organization. We first study the situation where entities move in
ℝ1. In Section 7.1 we show that the worst-case complexity of a central trajectory
in ℝ1 is Θ(𝜏𝑛2), and that we can compute one in 𝑂(𝜏𝑛2 log 𝑛) time. We then
extend our approach to entities moving in ℝu�, for any constant 𝑑, in Section 7.2.
For this case, we prove that the maximum complexity of a central trajectory ℭ is
𝑂(𝜏𝑛5/2). Computing ℭ takes 𝑂(𝜏𝑛3) time and requires 𝑂(𝜏𝑛2 log 𝑛) working
space. We briefly discuss various extensions, such as using different centrality
measures, in Section 7.3. Some of these complexities may seem fairly high, note
however that in all cases the input size is Θ(𝜏𝑛). So, if 𝜏 and 𝑛 are of the same
order of magnitude all our results are at most quadratic in the input size.

7.1 Entities moving in ℝ1

Let ℰ be the set of entities moving in ℝ1. The trajectories of these entities can
be seen as polylines in ℝ2: we associate time with the horizontal axis, and ℝ1

with the vertical axis (see Figure 7.2). We observe that the distance between two
points 𝑝 and 𝑞 in ℝ1 is simply their absolute difference, that is, ‖𝑝𝑞‖ = |𝑝 − 𝑞|.

Let ℐ be the ideal trajectory, that is, the trajectory that minimizes Ψ but is not
restricted to lie on the input trajectories. It follows that at any time 𝑡, ℐ(𝑡) is
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simply the average of the highest entity 𝒰(𝑡) and the lowest entity ℒ(𝑡). We
further subdivide each time interval 𝐽u� = [𝑡u�, 𝑡u�+1] into elementary intervals, such
that ℐ is a single line segment.

▶ Lemma 7.1. The total number of elementary intervals is 𝜏(𝑛 + 2).

Proof. The ideal trajectory ℐ changes direction when 𝒰(𝑡) or ℒ(𝑡) changes.
During a single interval [𝑡u�, 𝑡u�+1] all entities move along lines, so 𝒰 and ℒ are
the upper and lower envelope of a set of 𝑛 lines. So by standard point-line
duality, 𝒰 and ℒ correspond to the upper and lower hull of 𝑛 points. The
summed complexity of the upper and lower hull is at most 𝑛 + 2.

We transform the trajectories such that within each elementary interval
ℐ coincides with the 𝑥-axis. To simplify the description of the proofs and
algorithms, we also assume that the entities never move parallel to the ideal
trajectory, that is, there are no horizontal edges.

▶ Lemma 7.2. ℭ is a central trajectory in ℝ1 if and only if it minimizes the function

Ψ′(𝔗) = ∫
u�u�

u�0
|𝔗(𝑡)| d𝑡.

Proof. A central trajectory ℭ is a trajectoid that minimizes the function

Ψ(𝔗) = ∫
u�u�

u�0
Ξ(𝔗, 𝑡) d𝑡 = ∫

u�u�

u�0
max
u�∈ℰ

‖𝔗(𝑡)𝑏(𝑡)‖ d𝑡 = ∫
u�u�

u�0
max
u�∈ℰ

|𝔗(𝑡) − 𝑏(𝑡)| d𝑡

= ∫
u�u�

u�0
max{|𝔗(𝑡) − 𝒰(𝑡)|, |𝔗(𝑡) − ℒ(𝑡)|} d𝑡.

Since (𝒰(𝑡) + ℒ(𝑡))/2 = 0, we have that |𝔗(𝑡) − 𝒰(𝑡)| > |𝔗(𝑡) − ℒ(𝑡)| if and
only if 𝔗(𝑡) < 0. So, we split the integral, depending on 𝔗(𝑡), giving us

Ψ(𝔗) = ∫
u�0≤u�≤u�u�∧𝔗(u�)≥0

𝔗(𝑡) − ℒ(𝑡) d𝑡 + ∫
u�0≤u�≤u�u�∧𝔗(u�)<0

𝒰(𝑡) − 𝔗(𝑡) d𝑡

= ∫
u�0≤u�≤u�u�∧𝔗(u�)≥0

𝔗(𝑡) d𝑡 − ∫
u�0≤u�≤u�u�∧𝔗(u�)≥0

ℒ(𝑡) d𝑡 +

∫
u�0≤u�≤u�u�∧𝔗(u�)<0

𝒰(𝑡) d𝑡 − ∫
u�0≤u�≤u�u�∧𝔗(u�)<0

𝔗(𝑡) d𝑡.

We now use that − ∫
𝔗(u�)<0 𝔗(𝑡) = ∫

𝔗(u�)<0 |𝔗(𝑡)|, and that − ∫ ℒ(𝑡) = ∫ 𝒰(𝑡)
(since (𝒰(𝑡) + ℒ(𝑡))/2 = 0). After rearranging the terms we then obtain
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Ψ(𝔗) = ∫
u�0≤u�≤u�u�∧𝔗(u�)≥0

𝔗(𝑡) d𝑡 + ∫
u�0≤u�≤u�u�∧𝔗(u�)<0

|𝔗(𝑡)| d𝑡 +

∫
u�0≤u�≤u�u�∧𝔗(u�)≥0

𝒰(𝑡) d𝑡 + ∫
u�0≤u�≤u�u�∧𝔗(u�)<0

𝒰(𝑡) d𝑡

= ∫
u�0≤u�≤u�u�

|𝔗(𝑡)| d𝑡 + ∫
u�0≤u�≤u�u�

𝒰(𝑡) d𝑡.

The last term is independent of 𝔗, so we have Ψ(𝔗) = Ψ′(𝔗) + 𝑐, for some
𝑐 ∈ ℝ. The lemma follows.

By Lemma 7.2 a central trajectory ℭ is a trajectoid 𝔗 that minimizes the area
Ψ′(𝔗) between 𝔗 and the ideal trajectory ℐ. Hence, we can focus on finding a
trajectoid that minimizes Ψ′.

7.1.1 Complexity

▶ Lemma 7.3. A central trajectory ℭ for a set of 𝑛 trajectories in ℝ1, each with
vertices at times 𝑡0, .., 𝑡u� , may have worst-case complexity Ω(𝜏𝑛2).

Proof. We describe a construction for the entities that shows that within a
single time interval 𝐽 = [𝑡u�, 𝑡u�+1] the complexity of ℭ may be Ω(𝑛2). Repeating
this construction Ω(𝜏) times gives us Ω(𝜏𝑛2) as desired.

Within 𝐽 the entities move linearly. So we construct an arrangement 𝒜 of
lines that describes the motion of all entities. We place 𝑚 = 𝑛/3 lines such that
the upper envelope of 𝒜 has linear complexity. We do the same for the lower
envelope. We position these lines such that the ideal trajectory ℐ—which is
the average of the upper and lower envelope— makes a vertical “zigzagging”
pattern (see Figure 7.3). The remaining set 𝐻 of 𝑚 lines are horizontal. Two
consecutive lines are placed at (vertical) distance at most 𝜀. We place all lines
such that they all intersect ℐ. It follows that ℭ jumps Ω(𝑛2) times between the
lines in 𝐻 (as is shown in Figure 7.3). The lemma follows.

Two entities 𝑎 and 𝑏 are 𝜀-connected at time 𝑡 if there is a sequence 𝑎 =
𝑎0, .., 𝑎u� = 𝑏 of entities such that for all 𝑖, 𝑎u� and 𝑎u�+1 are within distance 𝜀
of each other at time 𝑡. A subset ℰ′ ⊆ ℰ of entities is 𝜀-connected at time 𝑡 if
all entities in ℰ′ are pairwise 𝜀-connected at time 𝑡. The set ℰ′ is 𝜀-connected
during an interval 𝐼, if they are 𝜀-connected at any time 𝑡 ∈ 𝐼. We now observe:

▶ Observation 7.4. ℭ can jump from entity 𝑎 to 𝑏 at time 𝑡 if and only if 𝑎 and 𝑏 are
𝜀-connected at time 𝑡.
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Figure 7.3: Lower bound construction that shows that ℭ (red) may have quadratic complexity. The
ideal trajectory ℐ is shown in green.

At any time 𝑡, we can partition ℰ into maximal sets of 𝜀-connected entities.
The central trajectory ℭ must be in one of such maximal sets ℰ′: it uses the
trajectory of an entity 𝑎 ∈ ℰ′ (at time 𝑡), if and only if 𝑎 is the entity from ℰ′

closest to ℐ. More formally, let 𝑓u�(𝑡) = |𝑎(𝑡)|, and let ℒ(ℱ) = minu� ∈ℱ 𝑓 denote
the lower envelope of a set of functions ℱ.

▶ Observation 7.5. Let ℰ′ be a maximal set of entities that is 𝜀-connected during
interval 𝐽, let 𝑎 ∈ ℰ′, and assume that ℭ ∈ ℰ′ during 𝐽. For any time 𝑡 ∈ 𝐽, we have
that ℭ(𝑡) = 𝑎(𝑡) if and only if 𝑓u� is on the lower envelope of the set ℱ′ = {𝑓u� ∣ 𝑏 ∈ ℰ′}
at time 𝑡, that is, 𝑓u�(𝑡) = ℒ(ℱ)(𝑡).

Let ℰ1, .., ℰu� denote a collection of maximal sets of entities, such that ℰu�
is 𝜀-connected during time interval 𝐽u�. Let ℱu� = {𝑓u� ∣ 𝑎 ∈ ℰu�}, and let ℒu� be
the lower envelope ℒ(ℱu�) of ℱu� restricted to interval 𝐽u�. A lower envelope ℒu�
has a break point at time 𝑡 if 𝑓u�(𝑡) = 𝑓u�(𝑡), for 𝑎, 𝑏 ∈ ℰu�. There are two types
of break points: (i) 𝑎(𝑡) = 𝑏(𝑡), or (ii) 𝑎(𝑡) = −𝑏(𝑡). At events of type (i) the
modified trajectories of 𝑎 and 𝑏 intersect. At events of the type (ii), 𝑎 and 𝑏
are equally far from ℐ, but on different sides of ℐ. Let 𝐵 = {(𝑡, 𝑎, 𝑏) ∣ ℒu�(𝑡) =
𝑓u�(𝑡) = 𝑓u�(𝑡) ∧ 𝑖 ∈ {1, .., 𝑚}} denote the collection of break points from all lower
envelopes ℒ1, .., ℒu�.
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▶ Lemma 7.6. Consider a triplet (𝑡, 𝑎, 𝑏) ∈ 𝐵. There is at most one lower envelope
ℒu� such that 𝑡 is a break point in ℒu�.

Proof. Assume by contradiction that 𝑡 is a break point in both ℒu� and ℒu�. At
any time 𝑡, an entity can be in at most one maximal set ℰℓ. So if ℰu� and ℰu�
share either entity 𝑎 or 𝑏, then the intervals 𝐽u� and 𝐽u� are disjoint. It follows 𝑡
cannot lie in both intervals, and thus cannot be a break point in both ℒu� and ℒu�.
Contradiction.

▶ Lemma 7.7. Let 𝒜 be an arrangement of 𝑛 lines, describing the movement of 𝑛
entities during an elementary interval 𝐽. If there is a break point (𝑡, 𝑎, 𝑏) ∈ 𝐵, with
𝑡 ∈ 𝐽, of type (ii), then 𝑎(𝑡) and 𝑏(𝑡) lie on the boundary 𝜕𝒵 of the zone 𝒵 of ℐ in 𝒜.

Proof. Let ℰu� be the maximal 𝜀-connected set containing 𝑎 and 𝑏, and assume
without loss of generality that 𝑓u�(𝑡) = 𝑎(𝑡) = −𝑏(𝑡) = 𝑓u�(𝑡). Now, assume by
contradiction that 𝑎 is not on 𝜕𝒵 at time 𝑡 (the case that 𝑏(𝑡) is not on 𝜕𝒵 is
symmetric). This means that there is an entity 𝑐 with 0 ≤ 𝑐(𝑡) < 𝑎(𝑡). If 𝑐 ∈ ℰu�,
this contradicts that 𝑓u�(𝑡) was on the lower envelope of ℰu� at time 𝑡. So 𝑐 is not
𝜀-connected to 𝑎 at time 𝑡. Hence, their distance is at least 𝜀. We then have
𝑎(𝑡) > 𝑐(𝑡) + 𝜀 > 𝜀. It now follows that 𝑎 and 𝑏 cannot be 𝜀-connected at time 𝑡:
the distance between 𝑎 and 𝑏 is bigger than 𝜀 so they are not directly connected,
and 𝑓u� and 𝑓u� are on ℒu�, so there are also no other entities in ℰu� through which
they can be 𝜀-connected. If 𝑎 and 𝑏 are not both in ℰu�, they cannot contribute to
a break point of ℒu�. Contradiction.

▶ Lemma 7.8. Let 𝒜 be an arrangement of 𝑛 lines, describing the movement of 𝑛
entities during an elementary interval 𝐽. The total number of break points (𝑡, 𝑎, 𝑏) ∈ 𝐵,
with 𝑡 ∈ 𝐽, of type (ii) is at most 6.5𝑛.

Proof. By Lemma 7.6 all break points can be charged to exactly one set ℰu�.
From Lemma 7.7 it follows that break points of type (ii) involve only entities
whose lines in 𝒜 participate in the zone of ℐ.

Let 𝐸 be the set of edges of 𝜕𝒵. We have that |𝐸| ≤ 5.5𝑛 [18, 101]. We now
split every edge that intersects ℐ, at the intersection point. Since every line
intersects ℐ at most once, this means the number of edges in 𝐸 increases to 6.5𝑛.
For every pair of edges (𝑒, 𝑔), that lie on opposite sides of ℐ, there is at most
one time 𝑡 where a lower envelope ℒu�, for some 𝑗, has a break point of type (ii).

Consider a break point of type (ii), that is, a time 𝑡 such that ℒ = ℒu� switches
(jumps) from an entity 𝑎 to an entity 𝑏, with 𝑎 and 𝑏 on opposite sides of ℐ.
Let 𝑒 ∈ 𝐸 and 𝑔 ∈ 𝐸 be the edges containing 𝑎(𝑡) and 𝑏(𝑡), respectively. If
the arriving edge 𝑔 has not been charged before, we charge the jump to 𝑔.
Otherwise, we charge it to 𝑒. We continue to show that every edge in 𝐸 is
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g

e

tg te tI Figure 7.4: The jumps of ℒ (dashed arrows) in-
volving edges u� and u�. If u� was charged by a
jump at time u�u� < u�u� < u�, then u� was opposite
to u� at time u�u�. Since ℒ can jump at most once
between u� and u� this yields a contradiction.

charged at most once. Since 𝐸 has at most 6.5𝑛 edges, the number of break
points of type (ii) is also at most 6.5𝑛.

We now show that either 𝑒 or 𝑔 has not been charged before. Assume, by
contradiction, that both 𝑒 and 𝑔 have been charged before time 𝑡, at times 𝑡u� and
𝑡u�, respectively. Consider the case that 𝑡u� < 𝑡u� (see Figure 7.4). At time 𝑡u�, the
lower envelope ℒ jumps from an edge ℎ onto 𝑒 or vice versa. Since there is a
jump involving edge 𝑔 at time 𝑡u� and one at time 𝑡 it follows that at time 𝑡u�, 𝑔 is
the closest edge in 𝐸 opposite to 𝑒. Hence, ℎ = 𝑔. This means we jump twice
between 𝑒 and 𝑔. Contradiction. The case 𝑡u� < 𝑡u� is symmetrical and the case
𝑡u� = 𝑡u� cannot occur. It follows that 𝑒 or 𝑔 was not charged before time 𝑡, and
thus all edges in 𝐸 are charged at most once.

▶ Lemma 7.9. The total complexity of all lower envelopes ℒ1, .., ℒu� on [𝑡u�, 𝑡u�+1] is
𝑂(𝑛2).

Proof. The break points in the lower envelopes are either of type (i) or of type
(ii). We now show that there are at most 𝑂(𝑛2) break points of either type.

The break points of type (i) correspond to intersections between the trajecto-
ries of two entities. Within interval [𝑡u�, 𝑡u�+1] the entities move along lines, hence
there are at most 𝑂(𝑛2) such intersections. By Lemma 7.6 all break points can
be charged to exactly one set ℰu�. It follows that the total number of break points
of type (i) is 𝑂(𝑛2).

To show that the number of events of the second type is at most 𝑂(𝑛2) as
well we divide [𝑡u�, 𝑡u�+1] in 𝑂(𝑛) elementary intervals such that ℐ coincides with
the 𝑥-axis. By Lemma 7.8 each such elementary interval contains at most 𝑂(𝑛)
break points of type (ii).

▶ Theorem 7.10. Given a set of 𝑛 trajectories in ℝ1, each with vertices at times
𝑡0, .., 𝑡u� , a central trajectory ℭ has worst case complexity 𝑂(𝜏𝑛2).

Proof. A central trajectory ℭ is a piecewise function. From Observations 7.4
and 7.5 it now follows that ℭ has a break point at time 𝑡 only if (a) two subsets
of entities become 𝜀-connected or 𝜀-disconnected, or (b) the lower envelope of
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Figure 7.5: The Reeb graph for the moving enti-
ties from Figure 7.2. The dashed lines indicate
that two entities are at distance u�.

a set of 𝜀-connected entities has a break point at time 𝑡. Within a single time
interval 𝐽u� = [𝑡u�, 𝑡u�+1] there are at most 𝑂(𝑛2) times when two entities are at
distance exactly 𝜀. Hence, the number of events of type (a) during interval
𝐽u� is also 𝑂(𝑛2). By Lemma 7.9 the total complexity of all lower envelopes of
𝜀-connected sets during 𝐽u� is 𝑂(𝑛2). Hence, the number of break points of type
(b) within interval 𝐽u� is also 𝑂(𝑛2). The theorem follows.

7.1.2 Algorithm
We now present an algorithm to compute a trajectoid ℭ minimizing Ψ′. By
Lemma 7.2 such a trajectoid is a central trajectory. The basic idea is to construct
a weighted (directed acyclic) graph that represents a set of trajectoids containing
ℭ. We can then find ℭ by computing a minimum weight path in this graph.

The graph that we use is a weighted version of the Reeb graph presented in
Section 5.1 of Chapter 5. Each edge 𝑒 = (𝑢, 𝑣) of the Reeb graph ℛ corresponds
to a maximal subset of entities 𝐶u� ⊆ ℰ that is 𝜀-connected during the time
interval [𝑡u�, 𝑡u�]. The vertices represent times at which the sets of 𝜀-connected
entities change, that is, the times at which two entities 𝑎 and 𝑏 are at distance
𝜀 from each other and the set containing 𝑎 merges with or splits from the set
containing 𝑏. See Figure 7.5 for an illustration.

By Observation 7.4 a central trajectory ℭ can jump from 𝑎 to 𝑏 if and only
if 𝑎 and 𝑏 are 𝜀-connected, that is, if 𝑎 and 𝑏 are in the same component 𝐶u�
of edge 𝑒. From Observation 7.5 it follows that on each edge 𝑒, ℭ uses only
the trajectories of entities 𝑎 for which 𝑓u� occurs on the lower envelope of the
functions ℱu� = {𝑓u� ∣ 𝑎 ∈ 𝐶u�}. Hence, the cost of using edge 𝑒 is

𝜔u� = ∫
u�u�

u�u�
ℒ(ℱu�)(𝑡) d𝑡.
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Thus, ℭ follows a path in the Reeb graph ℛ. In other words, the set of trajectoids
represented by ℛ contains a trajectoid minimizing Ψ′. We can compute a central
trajectory by finding a minimum weight path in ℛ from a source to a sink.

Analysis. First we compute the Reeb graph using the algorithm from Sec-
tion 5.2.1. This takes 𝑂(𝜏𝑛2 log 𝑛) time. Second we compute the weight 𝜔u� for
each edge 𝑒. The Reeb graph ℛ is a DAG, so once we have the edge weights,
we can use dynamic programming to compute a minimum weight path in
𝑂(|ℛ|) = 𝑂(𝜏𝑛2) time. So all that remains is to compute the edge weights
𝜔u�. For this, we need the lower envelope ℒu� of each set ℱu� on the interval
𝐽u�. To compute the lower envelopes, we need the ideal trajectory ℐ. We can
compute ℐ in 𝑂(𝜏𝑛 log 𝑛) time by computing the lower and upper envelope of
the trajectories in each time interval [𝑡u�, 𝑡u�+1].

Lemma 7.9 implies that the total complexity of all lower envelopes is 𝑂(𝜏𝑛2).
To compute them we have two options. We can simply compute the lower enve-
lope from scratch for every edge of ℛ. This takes 𝑂(𝜏𝑛2 ⋅𝑛 log 𝑛) = 𝑂(𝜏𝑛3 log 𝑛)
time. Alternatively, for each time interval 𝐽u� = [𝑡u�, 𝑡u�+1], we compute the ar-
rangement 𝒜 representing the modified trajectories on the interval 𝐽u�, and use
it to trace ℒu� in 𝒜 for every edge 𝑒 of ℛ.

Using a standard sweep line algorithm, an arrangement of 𝑚 line segments
can be built in 𝑂((𝑚 + 𝐴) log 𝑚) time, where 𝐴 is the output complexity. We
have 𝑂(𝑛2) line segments: 𝑛 + 2 per entity. Since each pair of trajectories
intersects at most once during 𝐽u�, we have that 𝐴 = 𝑂(𝑛2). Thus, we can build
𝒜 in 𝑂(𝑛2 log 𝑛) time. The arrangement 𝒜 represents all break points of type
(i), of all functions 𝑓u�. We now compute all pairs of points in 𝒜 corresponding
to break points of type (ii). We do this in 𝑂(𝑛2) time by traversing the zone of
ℐ in 𝒜.

We can then trace the lower envelopes through 𝒜: for each edge 𝑒 = (𝑢, 𝑣) in
the Reeb graph with 𝐽u� ⊆ 𝐽u�, we start at the point 𝑎(𝑡u�), 𝑎 ∈ 𝐶u�, that is closest to ℐ,
and then follow the edges in 𝒜 corresponding to ℒu�, taking care to jump when
we encounter break points of type (ii). Our lower envelopes are all disjoint
(except at endpoints), so we traverse each edge in 𝒜 at most once. The same
holds for the jumps. We can avoid costs for searching for the starting point of
each lower envelope by tracing the lower envelopes in the right order: when
we are done tracing ℒu�, with 𝑒 = (𝑢, 𝑣), we continue with the lower envelope of
an outgoing edge of vertex 𝑣. If 𝑣 is a split vertex where 𝑎 and 𝑏 are at distance
𝜀, then the starting point of the lower envelope of the other edge is either 𝑎(𝑡u�)
or 𝑏(𝑡u�), depending on which of the two is farthest from ℐ. It follows that when
we have 𝒜 and the list of break points of type (ii), we can compute all lower
envelopes in 𝑂(𝑛2) time. We conclude:



135

Figure 7.6: Point u� is closest to the ideal point u�, however
the smallest enclosing disk centered at u� is smaller than
that of u�.
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▶ Theorem 7.11. Given a set of 𝑛 trajectories in ℝ1, each with vertices at times
𝑡0, .., 𝑡u� , we can compute a central trajectory ℭ in 𝑂(𝜏𝑛2 log 𝑛) time using 𝑂(𝜏𝑛2)
space.

7.2 Entities moving in ℝ𝑑

In the previous section, we used the ideal trajectory ℐ, which minimizes the
distance to the farthest entity, ignoring the requirement to stay on an input tra-
jectory. The problem was then equivalent to finding a trajectoid that minimizes
the distance to the ideal trajectory. In ℝu�, with 𝑑 > 1, however, this approach
fails, as the following example shows.

▶ Observation 7.12. Let 𝑃 be a set of points in ℝ2. The point in 𝑃 that minimizes
the distance to the ideal point (i.e., the center of the smallest enclosing disk of 𝑃) is not
necessarily the same as the point in 𝑃 that minimizes the distance to the farthest point
in 𝑃.

Proof. See Figure 7.6. Consider three points 𝑎, 𝑏 and 𝑐 at the corners of an
equilateral triangle, and two points 𝑝 and 𝑞 close to the center 𝑚 of the circle
through 𝑎, 𝑏 and 𝑐. Now 𝑝 is closer to 𝑚 than 𝑞, yet 𝑞 is closer to 𝑏 than 𝑝, and 𝑞
is as far from 𝑎 as from 𝑏.

7.2.1 Complexity
It follows from Lemma 7.3 that the complexity of a central trajectory for entities
moving in ℝu� is at least Ω(𝜏𝑛2). In this section, we prove that the complexity of
ℭ within a single time interval [𝑡u�, 𝑡u�+1] is at most 𝑂(𝑛5/2). Thus, the complexity
over all 𝜏 time intervals is 𝑂(𝜏𝑛5/2).

Recall that Ξu� is the function expressing the distance from 𝑎 to the entity
farthest away from 𝑎. Let ℱ denote the collection of functions Ξu�, for 𝑎 ∈ ℰ. We
partition time into intervals 𝐽′

1, .., 𝐽′
u�′ such that in each interval 𝐽′

u� all functions Ξu�
restricted to 𝐽′

u� are simple, that is, they consist of just one piece. We now show
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that each function Ξu� consists of at most 𝜏(2𝑛 − 1) pieces, and thus the total
number of intervals is at most 𝑂(𝜏𝑛2). See Figure 7.1(c) for an illustration.
▶ Lemma 7.13. Each function Ξu� is piecewise hyperbolic and consists of at most
𝜏(2𝑛 − 1) pieces.
Proof. Consider a time interval 𝐽u� = [𝑡u�, 𝑡u�+1]. In interval 𝐽u�, the function 𝜉u�u�,
with 𝑏 ∈ ℰ, is a convex hyperbolic function (see the discussion in Section 6.1).
Each pair of such functions can intersect at most twice. During 𝐽u�, Ξu� is the
upper envelope of these functions 𝜉u�u�, so it consists of 𝜆2(𝑛) pieces, where 𝜆u�
denotes the maximum complexity of a Davenport-Schinzel sequence of order
𝑠 [2]. We have 𝜆2(𝑛) = 2𝑛 − 1, so the lemma follows.

▶ Lemma 7.14. The total number of intersections of all functions in ℱ is at most
𝑂(𝜏𝑛3).
Proof. Fix a pair of entities 𝑎, 𝑏. By Lemma 7.13 there are at most 𝜏(2𝑛 − 1)
time intervals 𝐽, such that Ξu� restricted to 𝐽 is simple. The same holds for Ξu�.
So, there are at most 𝜏(4𝑛 − 2) intervals in which both Ξu� and Ξu� are simple
(and hyperbolic). In each interval Ξu� and Ξu� intersect at most twice.

We again observe that ℭ can jump from one entity to another only if they are
𝜀-connected. Hence, Observation 7.4 holds for entities moving in ℝu� as well.
As before, this means that at any time 𝑡, we can partition ℰ into maximal sets
of 𝜀-connected entities. Let ℰ′ ∋ 𝑎 be a maximal subset of 𝜀-connected entities
at time 𝑡. This time, a central trajectory ℭ uses the trajectory of entity 𝑎 at time
𝑡, if and only if 𝑎 is the entity from ℰ′ whose function Ξu� is minimal. Hence, if
we define 𝑓u� = Ξu�, then Observation 7.5 holds again as well.

Consider all 𝑚′ = 𝑂(𝑛2) intervals 𝐽′
1, .., 𝐽′

u�′ that together form [𝑡u�, 𝑡u�+1]. We
subdivide these intervals at points where the distance between two entities
is exactly 𝜀. Let 𝐽1, .., 𝐽u� denote the set of resulting intervals. Since there are
𝑂(𝑛2) times at which two entities are at distance exactly 𝜀, we still have 𝑂(𝑛2)
intervals. Note that for all intervals 𝐽u� and all entities 𝑎, 𝑓u� is simple and totally
defined on 𝐽u�.

In each interval 𝐽u�, a central trajectory ℭ uses the trajectories of only one
maximal set of 𝜀-connected entities. Let ℰ′

u� be this set, let ℱ′
u� = {𝑓u� ∣ 𝑎 ∈ ℰ′

u�}
be the set of corresponding functions, and let ℒu� be the lower envelope of ℱ′

u�,
restricted to interval 𝐽u�. We now show that the total complexity of all these
lower envelopes is 𝑂(𝑛5/2). It follows that the maximal complexity of ℭ in 𝐽u� is
at most 𝑂(𝑛5/2) as well.
▶ Lemma 7.15. Let 𝐽 be an interval, let ℱ be a set of hyperbolic functions that are
simple and total on 𝐽, and let 𝑘 denote the complexity of the lower envelope ℒ of ℱ
restricted to 𝐽. There are Ω(𝑘2) intersections of functions in ℱ that do not lie on ℒ.
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Figure 7.7: The function u� (blue)
has at least ℓu�−2 = ⌊(u� −
1)/2⌋ intersections with func-
tions from ℱu� (black).

Li

a b

f

Proof. Let ℒ = 𝐿1, .., 𝐿u� denote the pieces of the lower envelope, ordered from
left to right. Consider any prefix ℒ′ = 𝐿1, ..., 𝐿u� of the pieces. The functions in ℱ
are all hyperbolic, so every pair of functions intersects at most twice. Therefore
any ℒ′ consists of at most 𝜆2(|ℱ|) = 2|ℱ| − 1 pieces. Hence, 𝑖 ≤ 2|ℱ| − 1. The
same argument gives us that there must be at least ℓu� = ⌊(𝑖 + 1)/2⌋ distinct
functions of ℱ contributing to ℒ′.

Consider a piece 𝐿u� = [𝑎, 𝑏] such that 𝑎 is the first time that a function 𝑓
contributes to the lower envelope. That is, 𝑎 is the first time such that 𝑓 (𝑡) = ℒ(𝑡).
Clearly, there are at least ℓu� such pieces. Furthermore, there are at least ℓu�−2
distinct functions corresponding to the pieces 𝐿1, .., 𝐿u�−2. Let ℱu� denote the set
of those functions.

All functions in ℱ are continuous and total, so they span time interval 𝐽. It
follows that all functions in ℱu� must intersect 𝑓 at some time after the start of
interval 𝐽, and before time 𝑎. Since 𝑎 was the first time that 𝑓 lies on ℒ, all these
intersection points do not lie on ℒ. See Figure 7.7. In total we have at least

ℓu�

∑
u�=2

ℓu�−2 =
⌊(u�+1)/2⌋

∑
u�=2

⌊(𝑖 − 1)/2⌋ =
⌊(u�+1)/2⌋−1

∑
u�=1

⌊𝑖/2⌋ = Ω(𝑘2)

such intersections.

▶ Lemma 7.16. Let ℱ1, .., ℱu� be a collection of 𝑚 sets of partial functions, let
𝐽1, .., 𝐽u� be a collection of intervals such that:

• the total number of intersections between functions in ℱ1, .., ℱu� is at most
𝑂(𝑛3),

• for any two intersecting intervals 𝐽u� and 𝐽u�, ℱu� and ℱu� are disjoint, and
• for every set ℱu�, all functions in ℱu� are simple, hyperbolic, and totally defined

on 𝐽u�.
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Let ℒu� denote the lower envelope of ℱu� restricted to 𝐽u�. The total complexity of the lower
envelopes ℒ1, .., ℒu� is 𝑂((𝑚 + 𝑛2)√𝑛).

Proof. Let 𝑘u� denote the complexity of the lower envelope ℒu�. An interval 𝐽u� is
heavy if 𝑘u� > √𝑛 and light otherwise. Clearly, the total complexity of all light
intervals is at most 𝑂(𝑚√𝑛). What remains is to bound the complexity of all
heavy intervals.

Relabel the intervals such that 𝐽1, .., 𝐽ℎ are the heavy intervals. By Lemma 7.15
we have that in each interval 𝐽u�, there are at least 𝑐𝑘2

u� intersections involving the
functions ℱu�, for some 𝑐 ∈ ℝ.

Since for every pair of intervals 𝐽u� and 𝐽u� that overlap the sets ℱu� and ℱu� are
disjoint, we can associate each intersection with at most one interval. There are
at most 𝑂(𝑛3) intersections in total, thus we have 𝑐′𝑛3 ≥ ∑u�

u�=1 𝑐𝑘2
u� ≥ ∑ℎ

u�=1 𝑐𝑘2
u� ,

for some 𝑐′ ∈ ℝ. Using that for all heavy intervals 𝑘u� > √𝑛 we obtain

𝑐′𝑛3 ≥
ℎ

∑
u�=1

𝑐𝑘2
u� ≥

ℎ
∑
u�=1

𝑐√𝑛𝑘u� = 𝑐√𝑛
ℎ

∑
u�=1

𝑘u�.

It follows that the total complexity of the heavy intervals is

ℎ
∑
u�=1

𝑘u� ≤ 𝑐′𝑛3/𝑐√𝑛 = 𝑂(𝑛2√𝑛).

By Lemma 7.14 we have that the number of intersections between functions
in ℱ in time interval [𝑡u�, 𝑡u�+1] is 𝑂(𝑛3). Hence, the total number of intersections
over all functions in all sets ℱ′

u� is also 𝑂(𝑛3). All functions in each set ℱ′
u� are

simple and totally defined on 𝐽u�, and all intervals 𝐽1, .., 𝐽u� are pairwise disjoint,
so we can use Lemma 7.16. It follows that the total complexity of ℒ′

1, .., ℒ′
u� is

at most 𝑂(𝑛5/2). Thus, in a single time interval the worst case complexity of ℭ
is also at most 𝑂(𝑛5/2). We conclude:

▶ Theorem 7.17. Given a set of 𝑛 trajectories in ℝu�, each with vertices at times
𝑡0, .., 𝑡u� , a central trajectory ℭ has worst case complexity 𝑂(𝜏𝑛5/2).

7.2.2 Algorithm
We use the same global approach as before: we represent a set of trajectoids
containing an optimal solution by a graph, and then compute a minimum
weight path in this graph. The graph that we use, is a slightly modified Reeb
graph. We split an edge 𝑒 into two edges at time 𝑡 if there is an entity 𝑎 ∈ 𝐶u�
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Figure 7.8: The modified Reeb graph ℛ for five entities moving during a single interval, and the
corresponding functions u�u� for each entity u�.

such that Ξu� = 𝑓u� has a break point at time 𝑡. All functions 𝑓u�, with 𝑎 ∈ 𝐶u�,
are now simple and totally defined on 𝐽u�. This process adds a total of 𝑂(𝜏𝑛2)
degree-two vertices to the Reeb graph. Let ℛ denote the resulting Reeb graph
(see Figure 7.8).

To find all the times where we have to insert vertices, we explicitly compute
the functions Ξu�. This takes 𝑂(𝜏𝑛𝜆2(𝑛) log 𝑛) = 𝑂(𝜏𝑛2 log 𝑛) time, where 𝜆u�
denotes the maximum length of a Davenport-Schinzel sequence of order 𝑠 [2],
since within each time interval [𝑡u�, 𝑡u�+1] each Ξu� is the upper envelope of a set
of 𝑛 functions that intersect each other at most twice. After we sort these break
points in 𝑂(𝜏𝑛2 log 𝑛) time, we can compute the modified Reeb graph ℛ in
𝑂(𝜏𝑛2 log 𝑛) time (Section 5.2.1).

Next, we compute all weights 𝜔u�, for each edge 𝑒. This means we have
to compute the lower envelope ℒu� of the functions ℱu� = {𝑓u� ∣ 𝑎 ∈ 𝐶u�} on
the interval 𝐽u�. All these lower envelopes have a total complexity of at most
𝑂(𝜏𝑛5/2):

▶ Lemma 7.18. The total complexity of the lower envelopes for all edges of the Reeb
graph is 𝑂(𝜏𝑛5/2).

Proof. We consider each time interval 𝐽u� = [𝑡u�, 𝑡u�+1] separately. Let ℛu� denote
the Reeb graph restricted to 𝐽u�. We now show that for each ℛu�, the total com-
plexity of all lower envelopes ℒu� of edges 𝑒 in ℛu� is 𝑂(𝑛2√𝑛). Since there are
𝑂(𝜏) time intervals 𝐽u�, the lemma then follows.

By Lemma 7.14, the total number of intersections of all functions ℱu�, with 𝑒
in ℛu�, is 𝑂(𝑛3). Each set ℱu� corresponds to an interval 𝐽u�, on which all functions
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in ℱu� are simple and totally defined. Furthermore, at any time, every entity is
in at most one component 𝐶u�. So, if two intervals 𝐽u� and 𝐽u�′ overlap, the sets of
entities 𝐶u� and 𝐶u�′, and thus also the sets of functions ℱu� and ℱu�′ are disjoint.
It follows that we can apply Lemma 7.16. Since ℛu� has 𝑂(𝑛2) edges the total
complexity of all lower envelopes is 𝑂(𝑛2√𝑛).

We again have two options to compute all lower envelopes: either we compute
all of them from scratch in 𝑂(𝜏𝑛2 ⋅ 𝜆2(𝑛) log 𝑛) = 𝑂(𝜏𝑛3 log 𝑛) time, or we
use a similar approach as before. For each time interval, we compute the
arrangement 𝒜 of all functions ℱ, and then trace ℒu� in 𝒜 for every edge 𝑒. For
𝑛2 functions that pairwise intersect at most twice, the arrangement can be built
in 𝑂(𝑛2 log 𝑛 + 𝐴) time, where 𝐴 is the output complexity [8]. The complexity
of 𝒜 is 𝑂(𝑛3), so we can construct it in 𝑂(𝑛3) time. As before, every edge is
traversed at most once so tracing all lower envelopes ℒu� takes at most 𝑂(𝑛3)
time. It follows that we can compute all edge weights in 𝑂(𝜏𝑛3) time, using
𝑂(𝑛3) working space.

Computing a minimum weight path takes 𝑂(𝜏𝑛2) time, and uses 𝑂(𝜏𝑛2)
space as before. Thus, we can compute ℭ in 𝑂(𝜏𝑛3) time and 𝑂(𝑛3 + 𝜏𝑛2)
space.

Reducing the required working space. We can reduce the amount of working
space required to 𝑂(𝑛2 log 𝑛 + 𝜏𝑛2) as follows. Consider computing the edge
weights in the time interval 𝐽 = [𝑡u�, 𝑡u�+1]. Interval 𝐽 is subdivided into 𝑂(𝑛2)
smaller intervals 𝐽1, .., 𝐽u� as described in Section 7.2.1. We now consider groups
of 𝑟 consecutive intervals. Let 𝐽 be the union of 𝑟 consecutive intervals, we
compute the arrangement 𝒜 of the functions ℱ, restricted to time interval
𝐽. Since every interval 𝐽u� has at most 𝑂(𝑛2) intersections, 𝒜 has worst-case
complexity 𝑂(𝑟𝑛2). Thus, at any time we need at most 𝑂(𝑟𝑛2) space to store
the arrangement. In total this takes 𝑂(∑u�2/u�

u�=1 (𝑛u� log 𝑛u� + 𝐴u�)) time, where 𝑛u� is
the number of functions in the 𝑖th group of intervals, and 𝐴u� is the complexity
of the arrangement in group 𝑖. The total complexity of all arrangements is
again 𝑂(𝑛3). Since we cut each function Ξu� into an additional 𝑂(𝑛2/𝑟) pieces,
the total number of functions is 𝑂(𝑛3/𝑟 + 𝑛2). Hence, the total running time is
𝑂((𝑛3/𝑟) log 𝑛+𝑛3). We now choose 𝑟 = Θ(log 𝑛) to compute all edge weights
in [𝑡u�, 𝑡u�+1] in 𝑂(𝑛3) time and 𝑂(𝑛2 log 𝑛) space. We conclude:

▶ Theorem 7.19. Given a set of 𝑛 trajectories in ℝu�, each with vertices at times
𝑡0, .., 𝑡u� , we can compute a central trajectory ℭ in 𝑂(𝜏𝑛3) time using 𝑂(𝑛2 log 𝑛+𝜏𝑛2)
space.
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7.3 Extensions
We now briefly discuss how our results can be extended in various directions.

Other measures of centrality. We based our central trajectory on the center
of the smallest enclosing disk of a set of points. Instead, we could choose other
static measures of centrality, such as the Fermat-Weber point, which minimizes
the sum of distances to the other points, or the center of mass, which minimizes
the sum of squared distances to the other points. In both cases we can use the
same general approach as described in Section 7.2.

Let Ξ̂2
u�(𝑡) = ∑u�∈ℰ 𝜉u�u�(𝑡)2 denote the sum of the squared Euclidean distances

from 𝑎 to all other entities at time 𝑡. This function Ξ̂2
u� is piecewise quadratic

in 𝑡, and consists of (only) 𝑂(𝜏) pieces. It follows that the total number of
intersections between all functions Ξ̂2

u� , 𝑎 ∈ ℰ, is at most 𝑂(𝜏𝑛2). We again
split the domain of these functions into elementary intervals. The Reeb graph
ℛ representing the 𝜀-connectivity of the entities still has 𝑂(𝜏𝑛2) vertices and
edges. Each vertex of ℭ corresponds either to an intersection between two
functions Ξ̂2

u� and Ξ̂2
u�, or to a jump, occurring at a vertex of ℛ. It now follows

that ℭ has complexity 𝑂(𝜏𝑛2).
To compute a central trajectory, we compute a shortest path in the (weighted)

Reeb graph ℛ. To compute the weights we again construct the arrangement of
all curves Ξ̂2

u� , and trace the lower envelope ℒu� of the curves associated to each
edge 𝑒 ∈ ℛ. This can be done in 𝑂(𝜏𝑛2 log 𝑛) time in total.

The sum of Euclidean distances Ξ̂u�(𝑡) = ∑u�∈ℰ ‖𝑎(𝑡)𝑏(𝑡)‖ is a sum of square
roots, and cannot be represented analytically in an efficient manner.1 Hence,
we cannot efficiently compute a central trajectory for this measure.

Similarly, depending on the application, we may prefer a different way of
integrating over time. Instead of the integral of Ξ, we may, for example, wish
to minimize maxu� Ξ(⋅, 𝑡) or ∫ Ξ2(⋅, 𝑡) d𝑡. Again, the same general approach still
works, but now, after constructing the Reeb graph, we compute the weights of
each edge differently.

Minimizing the distance to the ideal trajectory ℐ. We saw that for entities
moving in ℝ1, minimizing the distance from ℭ to the farthest entity is iden-
tical to minimizing the distance from ℭ to the ideal trajectory ℐ (which itself
minimizes the distance to the farthest entity, but is not constrained to lie on
an input trajectory). We also saw that for entities moving in ℝu�, 𝑑 > 1, these

1This is the problem we encountered in Chapter 4 when we wanted to find hotspots with curved
boundaries.
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two problems are not the same. So, a natural question is whether we can also
minimize the distance to ℐ in this case. It turns out that, at least for ℝ2, we can
again use our general approach, albeit with different complexities.

Demaine et al. [38] show that for entities moving along lines2 in ℝ2 the ideal
trajectory ℐ has complexity 𝑂(𝑛3+u�) for any 𝛿 > 0. It follows that the function
Ξ̌u�(𝑡) = ‖ℐ(𝑡)𝑎(𝑡)‖ is a piecewise hyperbolic function with at most 𝑂(𝜏𝑛3+u�)
pieces. The total number of intersections between all functions Ξ̌u�, for 𝑎 ∈ ℰ,
is then 𝑂(𝜏𝑛5+u�). Similar to Lemma 7.16, we can then show that all lower
envelopes in ℛ together have complexity 𝑂(𝜏𝑛4+u�). We then also obtain an
𝑂(𝜏𝑛4+u�) bound on the complexity of a central trajectory ℭ minimizing the
distance to ℐ.

To compute such a central trajectory ℭ we again construct ℛ. To compute
the edge weights it is now more efficient to recompute the lower envelope ℒu�
for each edge 𝑒 from scratch. This takes 𝑂(𝜏𝑛3 ⋅ 𝑛 log 𝑛) = 𝑂(𝜏𝑛4 log 𝑛) time,
whereas constructing the entire arrangement may take up to 𝑂(𝜏𝑛5+u�) time.

We note that the 𝑂(𝑛3+u�) bound on the complexity of ℐ by Demaine et al. [38]
is not known to be tight. The best known lower bound is only Ω(𝑛2). So, a
better upper bound for this problem also gives a better bound on the complexity
of ℭ and on the running time of our algorithm.

Relaxing the input pieces requirement. We require each piece of the central
trajectory to be part of one of the input trajectories, and allow small jumps
between the trajectories. This is necessary, because in general no two trajec-
tories may intersect. Another interpretation of this dilemma is to relax the
requirement that the output trajectory stays on an input trajectory at all times,
and just require it to be close (within distance 𝜀) to an input trajectory at all
times. In this case, no discontinuities in the output trajectory are necessary.

We can model this by replacing each point entity by a disk of radius 𝜀. The
goal is then to compute a path that stays within the union of disks at all times,
minimizes Ψ. We now observe that if at time 𝑡 the ideal trajectory ℐ is contained
in the same component of 𝜀-disks as ℭ, the central trajectory will follow ℐ. If
ℐ lies outside of the component, ℭ travels on the border of the 𝜀-disk (in the
component containing ℭ) minimizing Ξ(⋅, 𝑡). In terms of the distance functions,
this behavior again corresponds to following the lower envelope of a set of
functions. We can thus identify the following types of break points of ℭ: (i)
break points of ℐ, (ii) breakpoints in one of the lower envelopes ℒ1, .., ℒu�
corresponding to the distance functions of the entities in each component, and
(iii) break points at which ℭ switches between following ℐ and following a
lower envelope ℒu�. There are at most 𝑂(𝜏𝑛3+u�) break points of type (i) [38],

2Or, more generally, along a curve described by a low degree polynomial.
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and at most 𝑂(𝜏𝑛2√𝑛) of type (ii). The break points of type (iii) correspond to
intersections between ℐ and the manifold that we get by tracing the 𝜀-disks over
the trajectory. The number of such intersections is at most 𝑂(𝜏𝑛4+u�). Hence,
in this case ℭ has complexity 𝑂(𝜏𝑛4+u�). We can thus get an 𝑂(𝜏𝑛5+u� log 𝑛)
algorithm by computing the lower envelopes from scratch.

7.4 Concluding Remarks
We considered the problem of computing a time-dependent representative
trajectory for a given set of trajectories. We introduced such a representative:
a central trajectory, which consists of pieces of the input trajectories, jumps
from one trajectory to another only if they are close together, and minimizes
the size of the smallest enclosing disk over time. In the situation where the
entities generating the trajectories move in ℝ1, we showed that the worst case
complexity of a central trajectory is Θ(𝜏𝑛2), and that we can compute one in
𝑂(𝜏𝑛2 log 𝑛) time. We then extended our approach to entities moving in ℝu�,
for any constant 𝑑. In this case we proved that the maximal complexity of a
central trajectory is 𝑂(𝜏𝑛5/2), and that it can be computed in 𝑂(𝜏𝑛3) time using
𝑂(𝑛2 log 𝑛 + 𝜏𝑛2) working space.

Even though we do not expect this to happen in practice, the worst case
complexity of our central trajectories can be higher than the input size. If
this occurs, we can use traditional line simplification algorithms like Imai and
Iri [73] to simplify the resulting central trajectory. This gives us a representative
that still is always close —for instance within distance 2𝜀— to one of the input
trajectories. Alternatively, we can use dynamic-programming combined with
our methods to enforce the output trajectory to have at most 𝑘 vertices, for any 𝑘,
and always be on the input trajectories. Computing such a central trajectory is
more expensive than our current algorithms, however. Furthermore, enforcing
a low output complexity may not be necessary. For example, in applications
like visualization, the number of trajectories shown often has a larger impact
visual clutter than the length or complexity of the individual trajectories. It
may be easier to follow a single trajectory that has many vertices than to follow
many trajectories that have fewer vertices each.

There are various interesting open problems. First, there is still a gap between
the lower and upper bound on the complexity of a central trajectory in ℝu�,
with 𝑑 ≥ 2. It would be interesting to close this gap. Second, we would like an
output-sensitive algorithm to compute a central trajectory for entities moving
in ℝu�. In our current approach we need the lower envelope of a set of functions
ℱu� for edge 𝑒 of the Reeb graph. For two such edges 𝑒 and 𝑓 , the sets ℱu� and
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ℱu� may have a large number of functions in common, however we currently do
not have a good way to use this to our advantage. More concretely, we would
like a data structure that can maintain the lower envelope of a set of functions
ℱ, and allows us to efficiently merge ℱ with another set 𝒢, or split it into sets
ℱ1 and ℱ2. Third, from a modeling perspective, the relaxed model in which
the central trajectory stays within the union of “tubes” that we describe at the
end of Section 7.3 seems most natural. However, our bound on the complexity
of a central trajectory in that case is rather large. It would be very interesting to
improve on this.
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Concluding Remarks

Chapter

8
Technology such as the Global Positing System (GPS) has made tracking

moving entities easy and cheap. As a result there is a large amount of trajectory
data available, and an increasing demand for tools and techniques to analyze
such data. We considered four analysis tasks for trajectory data, and developed
efficient algorithms to perform them automatically. Two of these tasks involved
a single trajectory, and two of which involved multiple trajectories. In each
case, we used an approach typical in computational geometry: we formalized
the problem at hand, and analyzed its geometric properties. We then used
these properties to obtain efficient algorithms, often by using and developing
interesting techniques along the way.

In Chapter 3 we studied the problem of finding a segmentation of a trajectory
based on a non-monotone criterion. A segmentation is a partition of the trajec-
tory into (maximal) segments (contiguous sub-trajectories) such that the given
criterion holds on each segment. For a class of criteria, monotone criteria, it
was known how to compute a segmentation efficiently. We analyzed how to
handle non-monotone criteria, and presented a solution that can also handle
non-monotone criteria, provided they satisfy certain properties.

In Chapter 4 we studied the problem of finding hotspots; regions in which the
entity generating the trajectory spent a large amount of time. Several versions
of the problem exist. Two examples are (i) given the desired size of the hotspot,
find the location of a hotspot of that size that maximizes the time the entity
spends inside it, and (ii) given an amount of time 𝐿, find a smallest hotspot in
which the entity stays at least 𝐿 time units. We provided efficient algorithms for
six such versions, all of which easily extend to handling multiple trajectories.

In Chapters 5 and 6 we studied the problem of finding all (maximal) groups
and the trajectory grouping structure. A group is a movement pattern in which
sufficiently many entities move together during a sufficiently long time interval.
In addition to the groups themselves we also found the relation between groups,
e.g. a large group came into existence when two smaller groups merged. To
this end, we used a topological structure called the Reeb graph. In Chapter 5
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Figure 8.1: Some of the ingredients used in the work presented in this thesis.

we presented the algorithms to compute the Reeb graph and described how
to compute the trajectory grouping structure, and all maximal groups using
the Reeb graph. In Chapter 6 we significantly extended our results to the
case where the entities generating the trajectories move in a space containing
obstacles.

Finally, in Chapter 7 we studied the problem of finding a representative for a
set of trajectories. The representative should capture the defining features of all
trajectories in the input set, and incorporate both the spatial and the temporal
component of the trajectories. We introduced such a representative, the central
trajectory, and showed that it has these properties. Additionally, we provided
an efficient algorithm to compute a central trajectory by using the Reeb graph
from Chapter 5.

8.1 Outlook
The work in this thesis presents a significant step forward in the field of tra-
jectory and movement analysis. Even so, there are numerous directions for
interesting future work. We briefly review some of these directions here.

Including context information. In almost all current work on trajectory anal-
ysis it is assumed that the entities that generate the trajectories move in an
unbounded homogeneous infinite space (i.e. ℝu�, for some dimension 𝑑). No-
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table exceptions are the work of Buchin, Dodge, and Speckmann [30] and our
own work from Chapter 6. In reality, the entities move in a much more com-
plicated space containing roads, fields, lakes, forests, etc. This may influence
our analysis. For example, in a forest the entities may need to be closer to-
gether to be considered a group than in a field. Ideally, our algorithms should
incorporate such contextual information.

Non-point entities. We represented each moving entity by a point. This is
again true for virtually all work on trajectory analysis. If our entities are birds
that fly in an area of several hundred square kilometers then this assumption
is reasonable. However, if the entities are people moving in a small indoor
space like a metro station, or hurricanes crossing a county, we may want a more
detailed representation. Instead of representing a moving entity by a single
point, we can use a (connected) set of points such as a disk or a polygon. We
can revisit all our problems in this setting. It is conceivable that some of our
methods can be extended in case an entity is a disk. However, in case an entity
is represented by a polygon the orientation of these polygons should also be
taken into account. This changes the problems significantly, since a trajectory is
no longer just a polygonal line in ℝu� × 𝕋. Similar problems occur in the in the
related field of motion planing, where non-point entities like disks or polygons
are more common. Tools from that field like the configuration space may be
helpful in this case too [82].

We note that there are situations in which we may want to generalize the
problem even further, and allow the representation of the entity to change over
time. For example, we can model the movement of a glacier or a coast line by a
moving polygon whose shape changes over time.

Algorithms for massive data. A massive amount of trajectory data has al-
ready been captured. The popular sports-tracking website strava.com reported
that as of November 2014 their users had uploaded a total of 160 million trajec-
tories, containing a total of 375 billion vertices [109]. This accounts to at least
eight terrabyte of data, hence such data sets no longer fit in main memory of
a computer. As a result, the running time of our algorithms is no longer just
determined by the number of operations executed by the CPU. Instead, the
running time is largely determined by the time it takes to transfer data between
main memory and disk during the computation.

To perform analysis tasks on such large amounts of (trajectory) data, we
need to redesign our algorithms, and analyze them in a computation model
that incorporates the number of memory transfers. The two most common

http://www.strava.com
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such models are the IO model and the cache oblivious model [3, 55]. There is
virtually no existing work on trajectory analysis in these models yet.

Online and distributed algorithms. For all tasks considered, we assumed
that the trajectories of all moving entities have been collected before, and given
to us as a whole. However, we can also consider the situation in which we
are given the trajectories while the moving entities are generating them, and
we wish to perform the analysis task in real time. This introduces additional
complications. Consider for example our central trajectories problem: our
central trajectory corresponded to a shortest path in the weighted Reeb graph
ℛ. As the entities move, this graph changes, and thus the shortest path may
change. By adding a single edge to ℛ, we may suddenly get a completely
different different representation from the one computed so far. This may not
be desirable. To deal with issues like these we can use online algorithms and
competitive analysis [52].

In the problem sketched above, we still assumed that all required informa-
tion was somehow transmitted to a central computer running our algorithm.
However, even that may not be the case. We may be in a situation in which
there is no central computer, instead all computation has to happen on the
devices carried by the moving entities. For example, the device tracking the
movement of a bird may want to know if the bird is currently in a group, so
that it can enable an extra sensor and take additional measurements. In such
a scenario we need distributed algorithms. Some initial work has recently
appeared in this direction [21, 23].

Movement models. We defined a trajectory as a piecewise linear function
mapping time to a point in space. Thus, we assumed that in between the
vertices of the trajectory, the entity moved along a line with constant speed.
We may wish to generalize this to a larger class of movements. In contrast, in
many kinetic data structures it is sufficient if the movement of the entities can
be described by pseudo-algebraic curves of low degree [13].

Instead of considering a more general movement model, we may also con-
sider a more restricted model. Our lower bounds for the tasks involving mul-
tiple entities involve fairly contrived constructions that are highly unlikely to
occur in practice. So, we may want to disregard such input trajectories for the
efficiency analysis. This can be done using realistic input assumptions. Realistic
input assumptions are common in problems involving terrains. For example,
one can construct (a triangular irregular network (TIN)) representing a terrain
on which the visibility of a single view point has quadratic complexity. By
assuming that the triangles of the terrain are not too steep and not too skinny,
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the complexity can be reduced to only 𝑂(𝑛√𝑛), where 𝑛 the number of vertices
in the TIN [96]. For trajectory data this yields an interesting modeling question:
what constitutes realistic input? This may be a hard question however, consid-
ering that for most of the problems we considered the complexity is high even
if the entities are just moving along lines. Indeed, in practically all our lower
bounds we use a construction where the entities move along lines, and repeat
this same construction until the trajectories have their desired length.

Practical tools. We have taken an theoretical point of view on trajectory
analysis. We have considered the analysis tasks as a source of interesting
“puzzles” for us to solve. But let us not forget the practitioners: the people that
have the trajectory data, and wish to analyze it. Even though we solved the
four problems (tasks) that we considered, there is still a long way to go before
our solutions make it to the hands of the practitioners. The only algorithm
from this thesis that has been implemented is the one to compute the trajectory
grouping structure, and that implementation should be regarded only as a
proof of concept. Implementing our algorithms, and tools to make them usable
to practitioners, is still an important remaining task.





Samenvatting
Technologische ontwikkelingen zoals het Global Positioning System (GPS)
hebben het mogelijk gemaakt om gemakkelijk objecten, personen of dieren
te volgen. Het resultaat is een enorme collectie trajectory-data. Een trajectory
beschrijft de beweging van een object, persoon of dier1 gedurende een tijd-
spanne. Een trajectory geeft dus de locatie van het object als een functie van
de tijd. Trajectory-data bevat een schat van informatie, maar het analyseren
van trajectory-data is een lastig en tijdrovend proces. Een proces dat we graag
zouden automatiseren. Dat is het hoofddoel in dit proefschrift. We bekijken
een aantal analysetaken en ontwikkelen algoritmen en technieken om deze
taken door de computer uit te laten voeren. We zijn met name geïnteresseerd in
de technieken en algoritmen zelf en niet zozeer in het resultaat van de analyse
op een gegeven invoer-trajectory, of verzameling van invoer-trajectories.

We bekijken vier analysetaken. Voor elke taak gebruiken we een aanpak
kenmerkend voor de computationele meetkunde: we formaliseren de analy-
setaak en onderzoeken de geometrische eigenschappen die een rol spelen in
het probleem. We gebruiken deze eigenschappen om efficiënte (snelle) en
gegarandeerd correcte algoritmen te ontwerpen. In veel gevallen vereist dit
het gebruik en ontwerp van interessante technieken.

De analysetaken die we beschouwen zijn:

• Het segmenteren van een invoer-trajectory op basis van een gegeven niet-
monotoon criterium. Bij het segmenteren van een trajectory splitsen we
het trajectory in stukken zodanig dat elk stuk (segment) voldoet aan het
gegeven criterium. Bijvoorbeeld, segmenteer het trajectory zodanig dat
op elk segment het verschil tussen de minimum- en maximum-snelheid
ten hoogste 20 kilometer per uur is. Als een criterium dat op een segment
𝑆 voldaan is ook voldaan is op elk sub-segment van 𝑆 dan is het criterium
monotoon. Voor de klasse van monotone criteria is een efficiënt algoritme
bekend. We onderzoeken het geval dat het criterium niet-monotoon is
en ontwikkelen efficiënte algoritmen voor verschillende zulke criteria.

1In het vervolg gebruiken we enkel nog de term “object” om te verwijzen naar datgene dat
beweegt en dus het trajectory produceert.
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• Het vinden van hotspots: plekken waar het bewegende object een groot
deel van zijn tijd doorbrengt. Er zijn verschillende versies van dit pro-
bleem, bijvoorbeeld, wat is de locatie van de kleinste hotspot waarbinnen
het object tenminste een uur verblijft. We kunnen ook de grootte van
de hotspot vast leggen en vragen om de locatie van een hotspot (van
de gegeven grootte) waarbinnen het object de meeste tijd verblijft. We
beschouwen zes dergelijke varianten en beschrijven voor elke variant
een efficiënt algoritme. Onze algoritmen zijn bovendien makkelijk uit te
breiden naar het geval waarin we meerdere invoer-trajectories hebben.

• Het berekenen van alle groepen en hun onderlinge relaties. Een groep
is een verzameling van gezamenlijk bewegende objecten. We zijn enkel
geïnteresseerd in relevante groepen: groepen die groot genoeg zijn en
waarin de objecten lang genoeg dicht genoeg bij elkaar in de buurt blij-
ven. Daarnaast, zijn we geïnteresseerd in de relaties tussen de (relevante)
groepen. Een grote groep ontstaat wanneer twee kleinere groepen sa-
menkomen en stopt te bestaan wanneer de objecten in kleinere groepen
opsplitsen. We vatten al deze informatie samen in wat we de trajectory
grouping structure noemen.
Het is gebruikelijk in trajectory-analyse om aan te nemen dat de objecten
die de trajectories genereren bewegen in oneindige “lege” ruimte (i.e. ℝu�).
Dat is duidelijk geen realistische aanname. In werkelijkheid hebben de
objecten te maken met allerlei obstakels zoals gebouwen en rivieren. Voor
het berekenen van de trajectory grouping structure beschouwen we ook
dit scenario en analyseren we hoe de looptijd van onze algoritmen af
hangt van het toegestane type obstakels.

• Het vinden van een representative trajectory voor een gegeven verzameling
aan invoer-trajectories. Een representative trajectory dient de gezame-
lijke kenmerken van de invoer-trajectories samen te vatten. We geven
een definitie voor een representative trajectory, een central trajectory, dat
zowel de tijd als de locatie van de objecten in acht neemt. Een central
trajectory bestaat uit stukken van de invoer-trajectories en is ten alle tijden
“zo centraal als mogelijk”. We formaliseren dit en presenteren efficiënt
algoritmen om een central trajectory te berekenen, zelfs wanneer de ob-
jecten bewegen in ℝu�, voor een arbitraire (constante) dimensie 𝑑. Onze
resultaten voor het berekenen van de trajectory grouping structure spelen
ook hier een belangrijke rol.
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