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ABSTRACT

One important pattern analysis task for trajectory data is to find a
group: a set of entities that travel together over a period of time. In
this paper, we compare four definitions of groups by conducting
extensive experiments using various data sets. The grouping defini-
tions are different by one or more of three different characteristics:
whether they use the measured sample points or the continuous
movement, how distance is used to decide if entities are in the same
group, and whether the duration of the group is measured cumu-
latively or as one contiguous time interval. We are interested in
the differences between the definitions and comparisons to human
annotated data, if available. We concentrate on pedestrian data and
on different crowd densities. Furthermore, we analyze the robust-
ness of the definitions and their dependence on different sampling
rates. We use two different types of trajectory data sets: synthetic
trajectories from a crowd simulation model, and real-life trajecto-
ries extracted from video surveillance. We present the results of the
quantitative evaluations. For experiments with real-life trajectories,
we augment them with a qualitative evaluation using videos that
show groups in the trajectories with a color coding.

CCS CONCEPTS

+ Applied computing — Law, social and behavioral sciences;
» Theory of computation — Computational geometry; « Com-
puting methodologies — Model development and analysis.

KEYWORDS

Trajectories, collective motion, groups, experimental comparison

ACM Reference Format:

Lionov Wiratma, Marc van Kreveld, Maarten Loffler, and Frank Staals. 2019.
An Experimental Evaluation of Grouping Definitions for Moving Entities. In
27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’19), November 5-8, 2019, Chicago, IL, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3347146.3359346

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL 19, November 5-8, 2019, Chicago, IL, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6909-1/19/11...$15.00
https://doi.org/10.1145/3347146.3359346

Marc van Kreveld
Maarten Loffler

Frank Staals
{m.j.vankreveld, m.loffler,f.staals}@uu.nl
Dept. of Information and Computing Sciences, Utrecht
University, the Netherlands

1 INTRODUCTION

The abundance of inexpensive devices equipped with tracking tech-
nologies, such as GPS-enabled mobile phones and RFID tags, allows
easy recording of locations over a period of time. The quality of
such data has increased considerably in recent years in sampling
rate and geographic precision, and hence, vast amounts of move-
ment data have become available. Consequently, this gives rise to an
increasing interest to analyze them and furthermore, develop useful
applications in many research fields: animal movement and behav-
ior, traffic and transport, defense and surveillance, oceanographic
observations, weather and natural phenomena, people behavior,
health management, sports, and many others [14, 26].

Movement data of a single moving entity is typically described
as a trajectory. Formally, a trajectory is a continuous mapping
from a time interval I = [tsqart, topg] to the space in which the
entity is moving. Even though the movement is often continu-
ous, a tracking device usually reports the entity’s location only at
specific moments with regular or irregular intervals in between.
Therefore, trajectory data is often stored as an ordered sequence
of discrete time-stamped locations. For example, trajectory T =
{(p1, t1), (p2, £2), . - ., (pr, t)} represents the movement of an entity
in two-dimensional space, where p; = (x;, y;) denotes the position
of the entity at time t; and 7 is the total number of stored data
points. Since the original movement is continuous, we must assume
a position at any time between any two data points, and linear inter-
polation (constant velocity) is the simplest assumption. When the
sampling rate was sufficiently high, i.e. the movement was sampled
sufficiently often, we can assume that linear interpolation does not
induce a significant error.

There are many different ways to analyze movement data. Previ-
ous research on algorithms for the analysis of trajectory data in-
cludes determining trajectory (and sub-trajectory) similarity [7, 33],
segmenting a trajectory into a number of sub-trajectories based
on certain criteria (e.g. speed or direction) [1, 9], detecting out-
liers [27, 51], finding popular places [4, 16], and clustering trajecto-
ries into a number of sets of trajectories [49]. Furthermore, we can
analyze interactions between entities from their trajectories and
try to determine particular movement patterns like leadership [2],
commuting [6], chasing/avoidance behavior [11, 29], and more.

Collective movement patterns in which multiple entities travel
together during a period of time are particularly relevant. For ex-
ample, in ecology, researchers try to understand the behavior of
groups of animals (e.g., [20, 35]). In veterinary science, researchers
investigate whether the composition of animals in a group depends
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on the health level of its members [10, 12], and in social psychology
researchers analyze crowds to analyze human behavior [36]. In all
these areas, identifying collective movement in trajectory data can
provide critical new insights.

Many different definitions have been suggested to model the
collective movement of a “sufficiently large” set of entities that
travel “together” for a “sufficiently long” period of time: flocks [5,
15, 42], mobile groups [19], moving clusters [22], moving micro-
clusters [31], herds [18], convoys [21], swarms [32], gatherings [50],
traveling companions [39], platoons [30], groups [8], and refined
groups [40]. It is beyond the scope of this paper to overview them all
and explain their often subtle differences. We refer to the original
papers, most of which introduce the new collective movement
type, present one or more algorithms to compute it, and describe
experiments where the new algorithms are run on some data sets,
sometimes with a comparison to one earlier type.

Our Contribution. In this paper, we provide an extensive ex-
perimental study to find small groups in pedestrian data. This is
an important case in analyzing the throughput in public spaces
like shopping malls, parks and train stations, and in detecting sus-
pect behavior in such spaces. Small groups can be as small as just
two individuals. We compare four of the definitions, namely con-
voys (which in our setting are the same as traveling companions),
swarms, groups, and refined groups. These four definitions differ
in (i) how they model the input (as a continuous function or as
discrete time stamps), (ii) how they model when entities are consid-
ered together, and (iii) how they measure if the entities are together
long enough. Convoys (traveling companions) are a well-known
type that considers groups whose composition does not change,
where togetherness is consecutive, and assessment is done at the
time stamps themselves. Groups and refined groups distinguish
themselves from the other definitions on (i); treating time as a
continuous phenomenon may make a difference for patterns that
consist of relatively few timestamps, which is the case in our pedes-
trian settings. The refined groups definition is the only definition
that measures togetherness within the group only, not having other
non-group entities influence this. Swarms distinguish themselves
by not requiring a contiguous grouping; interruptions are allowed.
We discuss these four definitions in detail in the next section.

Early definitions that use a shape of the cluster (flocks) in the
definition are disregarded because they exhibit the lossy flock prob-
lem [21]. Since we study small groups, allowing group composition
change is not so suitable and hence we do not take definitions into
account where the composition may change (like moving clusters
and gatherings). Some other definitions are motivated mostly by
vehicle data; we also do not consider these. Finally, we note that the
four chosen definitions all use three main parameters: one for group
size, one for group duration, and one for inter-distance. Therefore,
comparing these definitions is more clean than including more com-
plex definitions that need more parameters. There are no definitions
that use fewer parameters.

Our study is not just an analysis of the four definitions, but
also of how the input, space, and time can be treated and how this
affects the results. Therefore, it may give indications on the results
for other definitions. We note that it is not the objective to find a
“best” definition, since we typically do not have a ground truth. For
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several of the data sets we do have human annotations of groups,
so we can compare the four definitions to the human annotations,
which are by their nature subjective.

We consider the following research questions:

(1) How well do the above definitions correspond with what
humans consider a “group”, and how do the characteristics
mentioned (input, connectivity, and duration) influence this?

(2) How does the number of groups, as reported by the various
definitions, depend on the density of the entities?

(3) How does the number of groups, as reported by the vari-
ous definitions, depend on the sampling rate of the input
trajectories?

To answer these questions we perform both a quantitative and
a qualitative study. For the quantitative analysis we compute and
compare the number of reported groups and the precision, recall,
and F1 scores of the various definitions with respect to human anno-
tation. Furthermore, we compute how well the various definitions
correspond to social formations used in crowd simulation, a behavior
scheme used to generate synthetic movement data that represents a
group of friends moving in a crowd [24]. For the qualitative analysis
we develop a novel visualization to show and compare groups in
video footage showing the movement of the entities. In particular,
our visualization allows easy comparison of the detected groups
with human annotation or with any other group definition. In our
evaluation we use use six data sets, all with different characteristics.
Four of these data sets are from real world trajectory data. The
remaining two are completely synthetic trajectories from a crowd
simulation model.

In a previous short paper we compared groups and refined groups
with a less broad focus [46]. The research questions, results and
analyses in this paper are new.

Organization. The remainder of the paper is organized as follows.
In Section 2 we review the grouping definitions that we consider,
and analyze how they differ in theory. We describe the methods for
our experimental comparison and introduce our new visualization
method in Section 3. The results of our experimental evaluation are
presented in Section 4.

2 THE DEFINITIONS

The four definitions rely on three parameters to define a group: the
size parameter (the number of entities in a group), the temporal
parameter ( the time interval in which those entities form a group),
and the spatial parameter (the distance between entities in the
group). We formalize these parameters to define a group G from a
set of moving entities X during time interval I:

e G contains at least m entities.
e [ has a duration at least §.
o Every pair of entities x, y € G is connected during I.

For the size parameter, the required minimum of entities to form
a group is the same for all four definitions.

For the temporal parameter, the swarms [32] definition handles
it differently from the others since it measures the duration of a
group cumulatively. Let T be a set of timestamps where at each
timestamp, every pair of entities € G are connected. Then, swarm
uses the size of T—the number of timestamps—to define the duration
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Table 1: Differences between grouping definitions

Input Connectivity ~ Duration
Original Groups (OG) continuous free consecutive
Refined Groups (RG) continuous within group consecutive
Convoys (CO) discrete free consecutive
Swarms (SW) discrete free cumulative

of G, rather than the duration of one contiguous time interval I.
Note that with this property, swarm allows entities € G to leave
G and join again later, as long as G is formed during at least k
timestamps (which may be non-consecutive). For the other three
definitions, the requirement for the temporal parameter is similar.
We note, however, that the original and refined group definitions use
interpolated positions between timestamps, the start and end time
of the duration of a group will typically not be at any timestamp.

For the spatial parameter, we take a close look at each definition.
The original group definition uses ¢-connectivity between two en-
tities as follows [8]: Two entities x and y (x,y € X) are directly
e-connected if at any particular timestamp ¢, the Euclidean distance
between x and y is at most ¢ (for some parameter ¢ > 0). Further-
more, x and y are e-connected in X at time ¢t if there is a sequence
X = X0, ..., X} =Y, With xp, ..., x; € X and for all i, x; and x;1 are
directly e-connected at time ¢. This definition has the advantage
that we need to consider the locations of all entities at time ¢ only,
to decide whether two of them are e-connected.

One may claim that it is more natural if connectivity for x and
y at time ¢ can only be provided by entities who are in the same
group, which is the approach taken by the refined group defini-
tion [40]. More specifically, to decide if x and y are ¢-connected in
in a group G, we ignore all entities not in G and require a sequence
X = X0,....X} =y, with xp, ..., xp € G where x; and x;1 are di-
rectly e-connected at time ¢. Computing groups using this refined
definition appears more complex since we cannot decide just from
the locations at time t whether x and y are e-connected. We need
the location history and future as well.

The convoy [21, 39] and swarm [32] definitions use the concept
of density connection [13], which is similar to the requirement
of the spatial parameter for the original group, but with a slight
difference. Let the e-neighborhood of an entity x € X is defined by
N¢(x), the number of other entities in X that have the Euclidean
distance at most ¢ (¢ > 0) from x (at any given timestamp ¢). Now,
given a density threshold p (1>0), an entity y € X is directly density-
reachable from x if y € N(x) and |N¢(x)| > p. Furthermore, y is
density-reachable from x if a sequence of entities € X exists where
each consecutive pair of entities in the sequence from x to y is
directly density-reachable. Clearly, if 4 = 1 then the notion of
(directly) density-reachable is exactly the same as the (directly)
e-connected in the original group definition. Henceforth, we only
use p = 1 since p > 1 prevents the convoy and swarm definitions
to identify groups that contain only two entities.

We summarize the differences between the definitions in Table 1.
We note that no two of the definitions we consider in this paper
are the same on all three aspects.
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Figure 1: Maximal groups according to: (m = 2,6 = 1)
CO: ABC[1, 2], ABC[4], AC[4, 5], BC[1, 4]

SW: ABC(1, 2, 4), AC(1, 2,4, 5), BC(1, 2, 3, 4)

OG/RG: ABC[1,2.1], AC[1, 2.5], AC[3.8, 5], BC[ 2.3, 4.6]

Maximal Groups. In the original and refined group definitions [8,
40], a group G is a maximal group during time interval I if there
is no time interval I’ O I for which G is also a group and there
is no G’ D G that is also a group during I. Moreover, swarms
also has exactly the same concept as the maximal group, namely
closed swarm. On the other hand, the definition of convoys only
considers the ones that are maximal. Henceforth, we also use the
term maximal group to describe the (maximal) convoy and the
closed swarm. Figure 1 illustrates the concept for a small example.
Note that the same set of entities can appear multiple times (at
different moments in time) as a maximal group under all definitions
except swarms.

Differences. Now, the differences shown in Table 1 affect how
each definition specifies maximal groups from a set of trajectories.
We demonstrate this using examples. First, we present an example
in Figure 2, where a maximal group containing exactly the same
entities may have different time durations, depending on which
definition we use. Let two black entities x and y be the only entities
that move; all red entities are stationary. Furthermore, trajectories
of x and y consist of the shown positions at to, t1, ..., ts, and we set
d = 2. Since x and y are not e-connected (or density reachable) at s,
the pair {x, y} is a convoy during the time interval [#y, t4], while the
swarm {x, y} is formed during the timestamps of {ty, t1, f2, 3, ts }.
With the original group definition, x and y are a group starting at
t; and ending at t4 5. Finally, the refined group of {x, y} can only
start when the distance between x and y is < ¢ because they cannot
be e-connected through the red entities. Therefore, they can only
start at t, and must end at t4.

Next, we show that the type of connectivity between entities
in a group such as in the refined group definition can result in a
completely different grouping. In Figure 3 [40], two entities a and
h are moving in the same direction, opposite to the other entities.
At any time during the time interval I = [t1,#3], a and h are -
connected through other entities. As a consequence, the convoy and
the swarm definitions consider {a, h} to be a group at timestamps
t1, t2, t3, or during interval I for the original group definition. In
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Figure 2: According to different definitions, the black enti-
ties are a group at different times
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Figure 3: Entities a and h are not a refined group during
[t1, 3], but they are an original group, convoy, and swarm
during [t1, £3] or t1, t2, t3 [40]

the refined group definition, {a, h} is not a group during I because
their connectivity is only through (changing) entities not in the
group itself. There are several refined groups that include a and h
that have a considerably shorter duration.

3 METHODS

To answer the research question described in Section 1, we conduct
extensive experiments by computing all maximal groups from vari-
ous trajectory data sets according to the different group definitions.
We evaluate the results both quantitatively and qualitatively.

3.1 Experimental set-up

Data sets. To conduct our experiments, we need trajectory data.
We use various data sets, which we divide into two categories based
on the source of the trajectories.

e Real-life trajectories extracted from videos surveillance in
a public area: the NYC Grand Station [47, 48], Crowds by
Examples [25, 28, 38] and Vittorio Emanuele II Gallery data
sets [3, 37, 38].

o Artificial trajectories generated by a computer simulation:
the Netlogo Flocking data set [43, 44] and the Utrecht Univer-
sity Crowd Simulation data set [24].

We describe each data set in more detail along with the results
of experiments using them in Section 4. The real-life data sets are
captured from video surveillance; hence their raw coordinates are
frame (pixel) coordinates from the videos. These coordinates are
first converted to world coordinates using a homography matrix to
be able to make fair distance comparisons. Most real-life trajectory
data sets also come with a list of human-annotated groups; only the
NYC Grand Station data set does not.

Implementations. In order to compute all maximal groups accord-
ing to the different notions of groups, we need implementations. We
used existing implementations where available, and implemented
the remaining algorithms ourselves. In particular, we use
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Figure 4: A moving entity is shown in a schematic manner.

o the Smart-and-Closed algorithm [39] to compute convoys,
o the ObjectGrowth algorithm [32] to compute swarms,
e our implementation from Buchin et al. [8] to compute origi-
nal groups, and
e our implementation from Wiratma et al. [46] to compute
refined groups.
Note that since the swarm algorithm has an exponential run-
ning time we were unable to compute all swarms for some of the
parameter values in our experiments.

3.2 Evaluation set-up

Quantitative Evaluation. We analyze and evaluate the results
from all experiments quantitatively. We compute and count all
maximum groups in our data sets according the four definitions
while varying the parameters of the definitions: the distance ¢, the
minimum time duration §, and the minimum group size m.

o For datasets with an alternative truth (either human-annotated
or generated), we test which of the groups found by each
definition match with the alternative truth'by providing
precision, recall, and F1 scores.

e We vary the density of the environment by considering 200,
300, and 400 entities moving in the same bounded space. We
compute the number of groups for each definition and study
how it changes with the number of entities.

e We vary the sampling rate, or level of detail, of the trajecto-
ries by ignoring a fraction of the vertices in each trajectory.
We count how many groups are identified by the different
definitions, and analyze the consistency of these numbers.

Qualitative Evaluation. We also qualitatively evaluate the results
of our experiments by visualizing the trajectories of pedestrians
integrated in the videos from the data sets.

Conceptually, we represent each moving entity by a schematic
figure that is overlaid on the video material; refer to Figure 4. Each
entity consists of three parts. The head is a disk which shows the
current location of the entity. The tail is a piece of curve which
shows the previous locations of the entity during a set duration. The
id is a unique identifier of the entity.

Grouping information is encoded by the color of the head and tail.
We use the color of the tail to show a base grouping: depending on
the data set this can be either the “ground truth”, a human-annotated
grouping, or a grouping computed by one of the methods. Entities
belonging to the same group have the same color, and every entity
can only belong to at most one group, which cannot change over
time. Entities that do not belong to any group in the “ground truth”
have a white tail. The color of the head indicates the grouping as
computed by the method currently under study. The computed
'We avoid the terms “correctness” and “aground truth”: we can only test to what extent

the groups found agree with an alternative. In particular, human-annotated data is
likely to be influenced by personal interpretation and therefore not a ground truth.
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Figure 5: Snapshot from a video.

groups can in principle overlap, and they do change over time. As a
result, the head of an entity can have multiple colors, and the color
of a head may change as time progresses.

The combination of colors of the tails and heads gives insight
into the matching between annotated groups and groups based on
a grouping definition. Note that colors are chosen at random; even
when a method produces a group that exactly matches with one of
the annotated groups, the color of the head may be different than
the color of the tail.

We applied this scheme to all our data sets and generated videos
for various parameter settings; see Figure 5 for an example. Our
implementation of the visualization is based on the work by Mau-
rice Marx [34]. In the remainder of this paper, we supply some
snapshots of interesting configurations, as well as links to specific
video fragments. The complete collection of videos from this paper
can be found on our website [45].

4 EXPERIMENTAL EVALUATION

In this section we evaluate the results of our experiments. We focus
our evaluation on the differences of the four definitions, and thus
on the maximal groups that are reported, rather than the differences
between the algorithms and their implementation. All implemen-
tations are non-optimized prototypes and therefore, comparing
statistics like running times is meaningless.

4.1 Comparisons with Annotated Groups and
Social Formations

We aim to establish how well the definitions capture the human
intuition of grouping. In our first experiment, we compute the
groups, as reported by the various definitions, and compare them
to human annotation. We then report the precision (the percentage
of the groups reported by the algorithm that also occur in the
annotated data), the recall (the percentage of the human-annotated
groups also found by the definition), and the corresponding FI-score.
In our second experiment, we use a crowd simulation framework
to generate trajectories including a set of entities traveling in a
“social formation”. Intuitively, this is a group. We test if the various
definitions identify these entities as a group.
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Table 2: Information on the trajectories in the data sets and
parameters used in the experiments. Here, g denotes the
number of annotated groups, and G their size range. The
video length is specified in minutes and seconds; the values
for ¢ and § are in meters and frames, respectively.

VEIG CBE
video length 05:00 03:36
FPS 8 25
#entities 630 434
avg T 189.82 400.12
g 207 115
G 2-7 2-4
€ 0.963 {1.22,1.52}
5 {17,38,58} {36,57,78}

4.1.1  Annotated Groups. We use two data sets consisting of real-
life trajectories from video surveillance: Vittorio Emanuele I Gallery
(VEIIG) and Crowds by Example (CBE). See Table 2 for details of
each data set. Besides trajectories of pedestrians, these data sets are
supplemented with homography matrices and lists of groups that
are annotated manually by the authors. The annotations specify
only which entities appear in a group, not when, or how long the
entities form a group. Moreover, unlike in the four definitions, an
entity occurs in at most one group in the human annotation.

For each definition, we count how many maximal groups match
exactly with the annotated groups and evaluate the correctness
using the precision, recall, and F1-score. For each data set we set
the minimum required number of entities m to 2. The values for
the inter-entity distance ¢ are chosen based on a study by Solera
et al. [38], who analyze the average distance between people in the
same group in a human crowd. Finally, we determine three different
values for required minimum time § that a group is together, based
on the group annotations. In particular, we assume that a set of
people cannot form a group when not all members are present in
the video. Hence, we compute the time interval during which all
members of an annotated group are present, and define the duration
of the group to be the length of this interval. The minimum such
duration over all groups gives us one choice of §. The other two
are chosen based on the average such duration § and the standard
deviation o. In particular, we pick § — o and § — %0.

Vittorio Emanuele II Gallery. The data set is taken from the video
surveillance in a hallway inside the Vittorio Emanuele II Gallery in
Milan, Italy. The flow of entities in the video is mostly bidirectional.
The results of our experiments are in Table 3.

First, we note that for all definitions, the precision values are
relatively small. This can be explained by the fact that all definitions
(except for swarm) consider a set of entities that is together during
two disjoint but sufficiently long time intervals as two different
(maximal) groups. Also, a group of 3 (or more) entities is often also
found as one or two subgroups of 2 entities with slightly longer
duration. Therefore, we focus on relative precision values. This also
holds for the other data sets in our experiments.

We observe that in this data set, the refined group corresponds
better to human annotation than the others based on their F1-score.
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Table 3: Comparative results on the Vittorio Emanuele II
data set with human annotation.

l [ Precision [ Recall [ F1 Score ]

oG 0.199 0.952 0.329
RG 0.223 0.947 0.361

5 =17
cO 0.202 0.952 0.333
SW 0.125 0.957 0.221
oG 0.357 0.884 0.509

5 =38 RG 0.414 0.884 0.564
CO 0.362 0.884 0.514
SW 0.238 0.932 0.379
oG 0.444 0.778 0.565

5 =58 RG 0.503 0.778 0.611
cO 0.451 0.778 0.571
SW 0.315 0.870 0.463

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Figure 6: (Left) The pedestrians in a group are not within dis-
tance ¢ long enough. (Center) The pedestrian in the middle
is close to the left pedestrian and not close to the right one
during this snapshot, but the reverse was the case earlier in
the video. The annotation has all three in a group. (Right)
The pedestrian on the left is always close to a group but the
annotation does not include it.

This is mostly since the refined group definition has the highest
precision out of the definitions considered. The swarm definition
has the best recall value, while the maximal groups by the original
group and convoy definitions find the same number of annotated
groups; refined group misses one in total. The higher recall of
swarm is related to the lower precision: swarm outputs many more
groups, some of which correspond to human annotation. These
may be groups with interrupted duration.

Our qualitative review shows several reasons why the grouping
definitions cannot match all annotated groups, see Figure 6. One
main reason is that the members of an annotated group are not
within ¢ distance for a duration §. This results in (i) annotated
groups not recognized at all, or (ii) grouping definitions only found
subgroups of annotated groups. There are also situations where
entities are always within distance ¢, but they were not annotated
as a group. It possible to increase the recall by increasing ¢, but the
precision is likely to go down.

Figures 7 and 8 show several scenarios that help to explain the
low precision of all four definitions.

Crowds by Example. The Crowds by Example (CBE) data set
records pedestrian outside a university building. The flow of pedes-
trians is different than in the GVEII data sets: pedestrians move in

Lionov Wiratma, Marc van Kreveld, Maarten Loffler, and Frank Staals

Figure 7: (Left) In this group of 3, the two pedestrians on the
right appear earlier and disappear later in the videos, mak-
ing a maximal group of 2 that is a subgroup of the 3. (Right)
Frames in sequence from left to right show a group that sepa-
rated for a while, resulting in two different maximal groups
by the grouping definitions, except for swarm.

Figure 8: (Left) Two groups of pedestrians standing close to-
gether, making different maximal groups when they walk
again. (Center) A group found by all four definitions that
was not annotated. (Right) In a dense environment, many
more groups are produced by all grouping definitions.

Table 4: Comparative results on the CBE data set; ¢ = 1.22

[ [ Precision [ Recall [ F1 Score

oG 0.172 0.565 0.264

5 =36 RG 0.181 0.565 0.274
CO 0.167 0.600 0.261
SW 0.176 0.652 0.277
oG 0.243 0.461 0.318

5=57 RG 0.254 0.452 0.325
CO 0.245 0.470 0.332
SW 0.269 0.574 0.366
oG 0.307 0.339 0.322
RG 0.315 0.339 0.327

5=178 -
CO 0.291 0.357 0.321
SW 0.326 0.522 0.401

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

various directions with varying speed. In this data set, vertices are
sampled once every 6 frames. For experiments using this data set,
we set € based on Proxemics Theory [17], rather than the theory by
Solera et al. [38] which seems to suggest an unrealistically small
value for ¢ (namely 0.41m). Instead, the maximum far phase for
a personal distance between pair of individuals from Proxemics
Theory gives ¢ = 1.22m.

Although swarms have the same discrete handling of the input,
it performs better on recall because it appears there are groups with
interrupted duration that are not found by the other definitions.

In dynamic crowds, we expect that entities from the same group
will not be close to each other all the time, which is one reason why
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Table 5: Comparative results on the CBE data set; ¢ = 1.52

l [ Precision [ Recall [ F1 Score

oG 0.131 0.817 0.226

5 =36 RG 0.138 0.817 0.236
CcO 0.130 0.835 0.225
SW 0.097 0.861 0.174
oG 0.180 0.722 0.288
RG 0.203 0.722 0.317

8 =57 —
cO 0.182 0.713 0.290
SW 0.135 0.800 0.231
OG 0.224 0.609 0.328

5=78 RG 0.260 0.591 0.361
CO 0.228 0.617 0.333
SW 0.164 0.757 0.270

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

swarms can have a high recall score. Hence, we do the same exper-
iment with different ¢, to see how the other definitions that find
maximal groups by a longest consecutive timestamp will perform.
We set ¢ = 1.52 and present the results in Table 5. As expected, we
see and increase in recall and decrease in precision for all defini-
tions. However, the F1 results from the swarm get worse and other
definitions now perform better for all §.

Our qualitative evaluation of the Crowds by Example data shows
similar situations as for the VEIIG data set.

4.1.2  Comparison to Generated Social Formations. We now com-
pare the grouping definitions to other notions of grouping. In par-
ticular, we consider “socially-friendly formations” in crowd simula-
tion [24].

We use a crowd simulation framework developed at Utrecht
University [41], aimed at generating realistic crowd behavior. The
framework allows agents (entities) to traverse a virtual environ-
ment, using global “indicative” routes on an underlying navigation
mesh [23]. The framework supports generating routes for a set
of entities that attempt to stay in a socially-friendly formation
throughout the motion (and to re-establish such a formation when
it is lost) [24]. We use the framework to generate trajectories in
which there is exactly one such a socially-friendly formation G. We
then test how well the definition of maximal groups capture G.

The input trajectories are generated as follows: we construct a
virtual environment in which we place a set P of nine “points of
interest”. We choose the eight corners of an octagon and its center
point as P. Each entity has a global route visiting these points of
interest. These global routes are picked randomly, i.e., when an
entity gets close to its point of interest we randomly select a new
target point of interest. We fix a set of four entities G that behave
like a social group, make sure that they start at the same point
in P, and follow the same global route. All remaining n’ = n — 4
entities do not have any social group behavior and pick their global
route individually. Figure 9 (left) shows an example of trajectories
in this data set. For each choice of n” € {100, 200, 300, 400, 500}, we
run the simulation for 1000 time steps, thus producing trajectories
with 1000 vertices each. Furthermore, for each n’, we repeat the
simulation ten times. Note that even though the entities in G use
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Figure 9: The trajectories from the Crowd Simulation data
set (left) and the Netlogo Flocking data set (right).

—e— Original Groups

—=— Refined Groups
50 | —e— Convoys

—_— Swarms

Figure 10: The percentage of time during which G is a max-
imal group as a function of the number of entities n’ (aver-
aged over ten simulations).

the same global route, the individual trajectories will differ as the
entities in G have to avoid colliding with other entities.

Finding Social Formations. We compute the maximal groups on
the resulting data sets, selecting ¢ = 1.6 and m = 4, and we compare
when G is a maximal group according to all definitions. Figure 10
shows the percentage of time during which G is a maximal group
as a function of the number of dummy entities n’, and thus of
the density in the environment. First note that, even though the
entities in G use the same global route, this is not a guarantee
that the entities remain close together (and thus form a group)
throughout the entire time interval considered. Indeed, we see that
as we increase the number of dummy entities, the entities in G may
be forced to spread out in order to avoid collisions. We see that for
all densities considered, G occurs as a maximal group longest in the
swarm definition and shortest in the refined group. An explanation
for this is that in all definitions except for the refined group, the
entities in G can stay in a group longer by using the non-group
entities to remain connected. Note, however, that this does not
guarantee that G is a maximal group for a longer period of time,
since these dummy entities could also create a larger maximal
group H D G that prevents G from being maximal. As expected,
swarm has a larger percentage where G is a group than the other
definitions, especially when the environment becomes more dense.
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Table 6: The average number of maximal groups for m = 10
and § = 10, and the standard deviation in the Netlogo data
set for 10 generated sets.

average (10 sets) std. dev.
§ & 0G RG CO SW oG RG CO SW
g 4 0 0 0 0 0 0 0 0
5 29| 22| 30| 108 3.99| 2.86| 3.63| 16.27
6 33.9] 25.9| 36.6| 229.3 23.48| 17.95| 21.65[252.86
§ & oG RG CO SW oG RG CcO SW
4 3.00 1.7 32| 9.1 3.58| 2.00| 4.60| 11.00
=ls 56.3| 38.4| 61.7| 229.0 12.17| 6.50| 12.79| 77.89
6 396.1| 304.5| 418.6]5017.3 64.15| 47.61| 53.61(2363.13
§ £ oG RG CcO SW oG RG CcO SW
[t 23.1| 12.3] 31.1] 112.2 9.63| 7.98| 9.83| 45.00
=ls 411.6| 259.0| 410.8]5299.6 108.00| 64.43|106.38|2466.9
6 | 1905.7|1357.0(1830.4 - 250.68(204.28(226.49 -

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Research question (1): correspondence to human annotation and
other models. Over all experiments, the refined groups have a slightly
higher F1 score in the correspondence to human annotation than the
original groups and convoys definitions, but they are usually close.
The higher F1 score is caused by a better precision. The swarms
definition sometimes corresponds better and sometimes worse to
human annotation. It appears to depend on the precise parameter
settings. We also observe that human annotation is likely some-
what subjective. When analyzing the retrieval of a socially-friendly
formation, we observe that all definitions notice interruptions of
the groups with increasing density. The swarms definition suffers
least from this and the refined groups definition most.

4.2 Dependence on Density

We generated several data sets using an adapted version of the Net-
Logo Flocking model [44]. This data is convenient because we can
easily produce data sets of varying densities. In the adapted model
the entities start to turn when they approach the border (instead of
wrapping around), and there is a small random component in the
new direction of the entities. This same model was used by Buchin
et al. [8] to test the definition of original groups.

In all our experiments, the size of the environment in which the
entities move is fixed and set to 256 X 256 units. See Figure 9 (right)
for a general impression of the moving entities in these data sets.
We consider different densities by varying the number of entities n
to be 200, 300 or 400, and generate data sets with 500 time stamps
each. For each generated data set, we compute all maximal groups
for all four definitions, with a fixed § = 10 and m = 10, but using
three values of ¢, namely 4, 5, and 6. We chose to vary ¢ because
this distance value is related to density, the characteristic under
investigation. Each experiment is performed 10 times and the av-
erage and standard deviation are computed. The results of these
experiments are shown in Table 6. There are no results for swarm
when ¢ = 6 and n = 400 due to the computation time needed: the
swarm algorithm has exponential running time.

Lionov Wiratma, Marc van Kreveld, Maarten Loffler, and Frank Staals

Figure 11: The Grand Station and trajectories of pedestrians.

Generally, for all definitions the number of maximal groups in-
creases as the density increases or when ¢ increases, which is not a
surprise. We see that in most settings the refined group produces
fewer maximal groups than the other definitions, and swarm pro-
duces more. All definitions show roughly a 20-fold increase from
n = 200 to n = 300 when ¢ = 5. From n = 300 to n = 400, the swarm
definition has a larger than 20-fold increase while the other three
definitions have a less than 10-fold increase. For ¢ = 4, the values
are too small for such observations. For ¢ = 6, we notice that the
increase for swarm from n = 200 to n = 300 is much larger than
for the other three definitions. Hence, it seems that swarm has a
larger increase in the number of maximal groups than the other
three definitions when the density increases. We notice a similar
effect when ¢ increases rather than the density.

Research question (2): dependence on density. As expected, all
grouping definitions find more groups when the density of entities
increases or when connectedness is satisfied at larger distances. The
swarm definition has a larger increase in the number of maximal
groups than the other definitions. Since we do not have a ground
truth or alternative truth, we cannot draw further conclusions from
these observations.

4.3 Dependence on Sampling Rate

The purpose of our last experiment is to examine how different
sampling rates of trajectories affect the maximal groups produced
by each definition. We conduct experiments by gradually removing
vertices from trajectories, thus decreasing their sampling rate. For
each new data set consisting of trajectories with a lower sampling
rate, we count how many maximal groups result.

The data set consists of trajectories from pedestrians inside the
Grand Central Terminal in New York City, USA (see Figure 112).
The data set contains 6000 video frames at which data points are
generated manually. This is once every 0.8 seconds. There are 12,684
pedestrians, with an average of 105.52 pedestrians in each frame.
For our experiment, we choose two sets of 800 consecutive frames
that have a high density. The first set contains 2591 trajectories
while the second contains 3313 trajectories. The average number
of vertices in a trajectory are 46.57 and 46.85, respectively.

2The background image and movement data are from [47].
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Table 7: The number of maximal groups from 2592 trajec-
tories in the Grand Station data set with different sampling
rate

[ [ 5% | 50% [ 100% |
0G 174 178 170
RG 173 177 169
=8 =5 140 158 177
0G 127 118 116
RG 127 118 117

=12

6 =125 175 111 122 121
0G 97 9% 9%
5 = 165 | EC 97 97 9%
- CcO 92 94 97

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 8: The number of maximal groups from 3313 trajec-
tories in the Grand Station data set with different sampling
rate

[ [ 25% | 50% | 100% |

0G 276 268 257

5 —s8s |KC 269 262 255
=% co 222 256 264
0G 211 206 203

5= 125 | G 206 200 200
- CcO 190 203 204
0G 172 168 159

RG 167 163 157

6 =16s CcO 160 156 161

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

First, we create a homography matrix to map frame coordinates
from the data set into ground coordinates. We choose ¢ = 0.76m
for a personal distance between pairs, based on the maximum close
phase from Proxemics Theory [17]. We vary the required minimum
duration for a maximal group § € {8, 12,16} in seconds. Finally,
we consider different sampling rates for the two sets of trajectories
by taking 25%, 50%, 100% of the vertices of the trajectories. Some
trajectories may be removed because less than 2 vertices remain.
The results of our experiments are in Tables 7 and 8.

We notice that the number of original groups and refined groups
is stable or increases slightly when reducing the sampling rate. In
contrast, the number of convoys decreases slightly when reducing
the sampling rate, and the number of swarms decreases substan-
tially. This trend is related to the cumulative version of the time
duration of swarms. Imagine a swarm with several disconnected
time intervals on its time duration (with a sampling rate of 100%).
By reducing the sampling rate, some of these time intervals will
likely to disappear, or their length is reduced. Therefore, the swarm
may not meet the required § anymore. On the other hand, the other
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definitions which use consecutive timestamps are not affected much
by this situation.

Research question (3): dependence on sampling rate. In general
it is preferable when a definition of grouping is not influenced
too much by the sampling rate, so in this respect the original and
refined group definitions perform a bit better than convoys and
much better than swarms.

5 CONCLUSION

We experimentally evaluated four definitions for grouping in trajec-
tory data: (original) groups, refined groups, convoys, and swarms.
We tried to establish how well these definitions correspond to the
human intuition of a group, how the number of groups depends
on the density of the entities in their environment, and how the
number of groups depends on the sampling rate of the trajectories.
In our experiments, the groups, refined groups, and convoys per-
form similar in terms of recognizing all sets of entities that were a
group according to the human annotations, with the refined groups
typically having the highest F1 score. On occasion the swarm def-
inition outperforms the other definitions. To be more conclusive
in these experiments, we first of all need better human annotation,
and second of all, test more data sets and settings.

We observe that the definitions that consider the trajectories to
be continuous mappings from time to space (original groups and
refined groups) are more stable than the definitions considering
the trajectories as discrete input (convoys and swarms) when we
consider the number of reported groups under reductions of the
sampling rate.

In general, it appears that swarm is most different among the
definitions, suggesting that taking group duration cumulatively has
alarger effect on grouping than the discrete or continuous handling
of the data, or the type of connectedness (see Table 1).

We expect that, by counting duration cumulatively rather than
consecutively, the swarm definition is more robust to noise than
the other methods, but at the same time finds more doubtful groups
that arise from several short, by-chance encounters. Other, more
robust grouping definitions can be developed and compared, which
would depend on a fourth parameter that describes how noise is
handled. Examples are platoons [30] and robust groups [8]. The
extra parameter makes proper experimentation harder, however.

In terms of qualitative assessment, we developed a style of video
annotation that allows us to compare two different grouping def-
initions. It is best suited for comparisons to groups from human
annotation. Videos using this visualization can be found on our
website [45].
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