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ABSTRACT
We study one of the basic tasks in moving object analy-
sis, namely the location of hotspots. A hotspot is a (small)
region in which an entity spends a significant amount of
time. Finding such regions is useful in many applications,
for example in segmentation, clustering, and locating pop-
ular places. We may be interested in locating a minimum
size hotspot in which the entity spends a fixed amount of
time, or locating a fixed size hotspot maximizing the time
that the entity spends inside it. Furthermore, we can con-
sider the total time, or the longest contiguous time the en-
tity spends in the hotspot. We solve all four versions of the
problem. For a square hotspot, we can solve the contiguous-
time versions in O(n logn) time, where n is the number of
trajectory vertices. The algorithms for the total-time ver-
sions are roughly quadratic. Finding a hotspot containing
relatively the most time, compared to its size, takes O(n3)
time. Even though we focus on a single moving entity, our
algorithms immediately extend to multiple entities. Finally,
we consider hotspots of different shape.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
trajectory, moving entity, hotspot, geometric algorithms

1. INTRODUCTION
In the last decade there have been many developments

in trajectory data and their analysis. Due to increasingly
simple and precise tracking technologies, large data sets of
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trajectories have been collected and are being analyzed. Ob-
jects that are tracked are as diverse as pedestrians, birds,
insects, mammals, cars, ships, and hurricanes.

Broadly one can classify the analytical tools into two classes;
algorithms for clustering, segmentation, flock detection, and
trajectory similarity, and visual analytics techniques used
to assist domain experts to analyze the data. In the former
class we can distinguish general-purpose algorithms, and al-
gorithms developed for specific application-driven tasks, or
even for specific data sets. We briefly review the tasks and
approaches in general-purpose trajectory analysis.

Similarity. The similarity of two trajectories can be cap-
tured by a function that takes two trajectories and re-
turns a scalar: the higher the value, the higher the sim-
ilarity. Similarity is usually viewed as the inverse of
distance. There are several common, general-purpose
distance measures for trajectories, including the Haus-
dorff distance [2], Frechet distance [3], Dynamic Time
Warping [22], time-focused distance [28], and edit dis-
tance [34].

Besides similarity of whole trajectories, one could also
define and compute similarity of subtrajectories of two
trajectories [11], or self-similarity of subtrajectories within
a single trajectory [10].

Clustering. Clustering is the process of partitioning tra-
jectories into a usually small number of groups so that
within each group, the trajectories are similar, but across
different groups, they are dissimilar. Trajectory cluster-
ing has been studied in [16, 24, 28], for example.

The use of similarity measures to assist in clustering
is clear. Once a similarity measure is selected, many
of the standard clustering methods for point data can
be used for trajectory data as well, like single-linkage
and complete-linkage clustering [19]. For other cluster-
ing methods like k-means and k-medoids, we also need
a process that determines a specific, typical trajectory
from a set of trajectories.

Segmentation. An analysis method that operates on a sin-
gle trajectory is segmentation. Segmentation involves
splitting a trajectory into a number of subtrajectories
that have certain characteristics [6, 12, 35].

Motion patterns. When we are analyzing a set of trajec-
tories and are interested in interactions like joint motion
or leadership, we speak of motion patterns in trajecto-
ries [14, 17, 20]. Several definitions of flocking [8, 18] and



various other group motions [9, 23, 33] have been given
and algorithms for these have been suggested.

Interesting places. From a collection of trajectories one
can identify (small) places that are visited by many dif-
ferent trajectories, places that are used by a single mov-
ing entity for a long duration, or places where many tra-
jectories change their movement behavior (e.g., they all
pause), see [7, 26, 29, 32, 33]. Such locations are called
hotspots, popular places, stationary regions, stay points,
or stops.

In this paper we focus on the last analysis type, the detec-
tion of interesting places in trajectory data. In particular,
we give algorithms to identify regions where a moving object
spends a large amount of time. We refer to such a region
as a hotspot, and model it as a square whose location is not
known yet. We distinguish several versions of the problem
of finding square-shaped hotspots. Extensions to different
hotspot shapes are considered as well. The problems we
consider are:

1. the size of the square is fixed and we wish to find the
placement that maximizes the time the entity spent
inside. Here we allow the entity to leave the region
and return to it later; all visits count for the duration.

2. We are given a duration and want to determine the
smallest square and its placement so that the entity is
inside for at least the given duration.

3. We consider problem 1, but now we are interested in
contiguous presence inside the square, so only one of
the visits to the square counts.

4. The same for problem 2, and finally
5. we do not fix duration nor square size, but optimize a

relative measure that is the ratio of the duration and
the square side length.

We do not assume that the hotspots are pre-defined; in-
stead, we adopt the more generic view that no contextual
data is present. This is in contrast to Alvares et al. [4] and
Chawla and Verhein [33], who assume that a set of places
or a superimposed grid is given that pre-defines potential
regions of interest. Our work is different from research that
uses the stop-and-move model [4, 26, 31], because we do
not attempt to segment a trajectory at changes in move-
ment type, nor do we try to semantically annotate a trajec-
tory. Our methods allow the time of multiple visits to be
added to obtain a hotspot: three visits of an hour can be
considered more important than a single visit of two hours.
Finally, our results are also different from research on pop-
ular places [7, 32] because the number of entities that visits
the region plays no role. Benkert et al. [7] do not incorpo-
rate the duration of visits, so the retrieved popular places
could be transit places used by many entities. Tiwari and
Kaushik [32] consider only contiguous-time visits and choose
their time intervals based on the trajectory vertices only, not
the locations in between. In contrast, we consider a trajec-
tory to be a continuous space-time object and not a sampling
of a discrete set of points in space-time. This implies that
entering and leaving a hotspot is not restricted to vertices
and that our results are less influenced by sampling rate and
regularity. We solve the hotspot identification problem as an
algorithmic optimization problem and provide running time
bounds. We present our results for a single trajectory, but
they immediately extend to the case of multiple trajectories.

Before formalizing the problem further, we discuss various
situations where our methods are useful, besides hotspot
location itself.

First-passage time: In animal ecology, first-passage time
is defined as the time taken for an animal to cross a circle
of a given radius that is centered at some start time on
the trajectory. It can be used as a measure for search
effort along a trajectory, and a long first-passage time
may indicate that there is a significant amount of food
in an area [15, 21]. First-passage time is closely related to
contiguous-time visit to a region, although the presence
of food may be indicated better by total visit time of one
or more animals.

Segmentation: When a trajectory is segmented into se-
mantically meaningful parts, it may be important to
use more advanced trajectory properties than speed and
heading, for example. Segmentation can also be assisted
using environment data, but this requires such data to
be acquired and processed. Even when environment
data is not available, we can pre-process the trajectory
and determine areas where the entity spends significant
amounts of time. The entering and leaving of such re-
gions can be a reason to segment a trajectory there.
In this situation we require consecutive time within the
area, so that crossing the area without halting does not
lead to unnecessary segmentation.

Clustering: In some clustering applications we may be in-
terested in the places where an entity spends some time,
but not in the routes taken by the entity between these
places. To identify the similarity of two trajectories
in this situation we must identify these places and ig-
nore the rest. Our algorithm can do this, after which
a method like dynamic time warping on the distances
between these relevant places is done.

An example of such a situation is migration. We may
find similarity in resting places more relevant than the
routes travelled between these places.

Visualization: Our methods can be used iteratively to en-
rich a trajectory data set with symbols that indicate that
one or more entities spend much time there. For exam-
ple, after locating a fixed-size square region where most
time is spent, we can remove all pieces of trajectories
inside that square, and iterate to find the next longest-
visited square region. This is possible because our al-
gorithms do not require trajectories to be contiguous or
complete. We can then show the top-10 places in terms
of duration of visits.

Problem Statement. A trajectory T is a continuous func-
tion, mapping a time interval onto points in the plane. By
scaling we can assume without loss of generality that the
time interval is [0, 1]. We write T [t] for the point on T at
time t ∈ [0, 1]. Furthermore, we denote the subtrajectory
from time s to time t, with s ≤ t ∈ [0, 1], by T [s, t]. In the
remainder of this paper, we consider only piecewise linear
trajectories. Thus, the image of T consists of n line seg-
ments, the edges, in the plane. The end points of these edges
are the vertices of T . By general position, we assume that
there are no two vertices that have the same x-coordinate
or the same y-coordinate. Our results do not depend on



this assumption but the description is considerably easier
because of it.

With slight abuse of notation we use T to denote the
trajectory as well as the set of edges {e1, .., en} of trajectory.
An edge e between points u and v, denoted e = uv, has
length ‖e‖. We use the same notation for line segments and
(sub)trajectories.

Let H ⊂ R2 denote the axis-parallel square hotspot with
center c and side length 2r. We refer to r as the radius
of H. The boundary of H is denoted by ∂H. The func-
tion Υ(H) =

∑
e∈T ‖e ∩ H‖ describes the total length of

the trajectory inside H. Similarly, Φ(H) = max{‖T [s, t]‖ |
s, t ∈ [0, 1] ∧ T [s, t] ⊆ H} denotes the length of the longest
(contiguous) subtrajectory in H, and Ψ(H) = Υ(H)/2r de-
notes the relative trajectory length in H. We may write
Υ(c, r) = Υ(H), and Υ(c) = Υ(c, r) if c and/or r is clear
from the context. We do the same for Φ and Ψ. We can
now formalize the five problems that we study as follows.

1. Given r, maximize Υ(·, r) over all square placements.
2. Given L, find a smallest hotspot H∗ with Υ(H∗) ≥ L

over all square placements and sizes.
3. Given r, maximize Φ(·, r) over all square placements.
4. Given L, find a smallest hotspot H∗ with Φ(H∗) ≥ L,

over all square placements and sizes.
5. Find a hotspot H∗ that maximizes Ψ, over all square

placements and sizes.

We describe our algorithms by considering length rather
than duration because it is more intuitive and easier to
describe. Adapting the algorithms to consider duration is
straightforward, however. We simply observe that all lem-
mas and algorithms still hold for weighted edges, and we can
use the Euclidean and duration lengths of an edge to assign
a weight to each edge so that maximizing weighted length
inside H is the same as maximizing duration inside H.

Results and Organization. Our algorithms that solve the
above problems all use a key property of Υ, namely that it is
a linear function in c and r. We prove this in Section 2, and
discuss how the shape ofH affects this property. In Section 3
we study problems 1 and 2, and show that we can solve
them in O(n2) time and O(n2 log2 n) time, respectively. We
focus on the contiguous-length variants, problems 3 and 4,
in Section 4. We show that we can solve both problems
in O(n logn) time. In Section 5 we present an algorithm to
maximize the relative trajectory length Ψ that lies inH, that
is, we solve problem 5. This algorithm uses O(n3) time. We
review some extensions, like multiple entities and different
shapes for H, in Section 6.

2. PRELIMINARIES
We start by showing that Υ (and also Φ) is a piecewise

linear function, which is key in our algorithms.

Lemma 1. Consider a square hotspot H with center c and
radius r. The function Υ is piecewise linear in c and r. The
break points of Υ correspond to hotspots such that: (i) a
vertex of T lies on a side of H, or (ii) a corner of H lies on
an edge of T .

Proof. It is easy to see that Υ is piecewise, its pieces
depending (only) on which trajectory edges intersect the
boundary ∂H of H, and how they do so. Let E denote the
set of edges that intersect ∂H. When a side of ∂H crosses

a trajectory vertex the set E changes, and when a corner of
H crosses a trajectory edge, it changes how an edge e ∈ E
intersects ∂H. Hence, the break points of Υ are of type (i)
and (ii). It remains to show that Υ is linear in c and r.

Since H is convex, the intersection between an edge e =
uv ∈ T and H is single contiguous line segment, a singleton
point, or it is empty. Fix the set of sides of H intersected
by e, let pλ = (1 − λ)u + λv, and let α and β be functions
such that pα(c,r)pβ(c,r) = e ∩ H. We can then express the
contribution of e, that is, the length of the part of e that lies
inside of H, as Υe(c, r) = ‖e ∩ H‖ = ‖e‖ (β(c, r)− α(c, r)).
It is now an easy exercise to show that α and β are linear
functions in c and r. It follows that ‖e∩H‖ is piecewise linear
in c and r, and hence Υ is piecewise linear as well.

A function γ is a simple linear function if it is of the form
γ(x) = ax + b, for a, b ∈ R. Since each piece of Υ is a
simple linear function, Υ has a description of constant size
that we can evaluate and update in O(1) time. This is still
the case when H is convex and polygonal. However, when
H has a curved boundary the intersection points of a single
edge are no longer linear functions of c and r. For example,
in case H is a disk, these intersection points are described
by an equation of the form

√
γ(c, r), where γ is a quadratic

function in c and r. This means that on a single piece, Υ is
the sum of square roots. A description of this function has
linear size, and linear time is required to evaluate it. Worse
still is that we can no longer analytically compute the roots
of its derivative, which is needed for maximization. For this
reason, we focus on square hotspots.

3. TOTAL LENGTH

3.1 Fixed Radius
When the radius r of H is fixed, we can compute a place-

ment that maximizes Υ as follows (see [27] for a very similar
approach). Let c be the center of H, and consider the pa-
rameter space of c. We compute a subdivision S of the
parameter space such that inside each cell, Υ is a simple
linear function. It follows that maxima can occur only at
vertices of this subdivision. For each cell C, we compute
this function and evaluate it at the vertices of C. We can
then just select the maximum over all cells. It remains to
bound the number of cells in S.

Each edge of T yields O(1) line segments in S. Thus S
is the arrangement of O(n) line segments and can be con-
structed in O(n2) time. See Fig. 1 for an illustration of S.

Figure 1: A trajectory and the corresponding subdivision
S. The line segments corresponding to a single edge e are
drawn in purple.



Let ΥC denote the function Υ restricted to cell C. In each
cell of S we can compute ΥC and its maximum from scratch.
This takes O(n) time. However, for neighboring cells C and
D, ΥC and ΥD can differ in only two ways: (i) the set of
contributing edges has increased or decreased by one or two
edges, or (ii) an edge intersects a different side of H. So, we
can compute a function ∆C,D that describes these changes
in constant time. We then have ΥD(c) = ΥC(c) + ∆C,D(c),
and thus we can compute ΥD from ΥC in constant time (as
in [27]). Since S consists of O(n2) cells we conclude:

Theorem 2. Given a radius r, we can find a hotspot H∗
with radius r that maximizes Υ in O(n2) time.

3.2 Fixed Length
Now we are given a threshold L, and we need to find the

center c∗ and the radius r∗ of a minimum size hotspot H∗
with Υ(c∗, r∗) ≥ L.

The general idea is to use Megiddo’s parametric search
technique [25]. We briefly sketch this technique here. A
more detailed explanation can be found in [1, 25].

Consider a decision algorithm As that, for a given radius
r, can determine if there is a center c for which Υ(c, r) ≥
L in Ts time. The parametric search technique will run
this algorithm with the unknown optimum value r∗. When
the technique encounters comparisons involving the radius
r∗—in the form of “is this small polynomial equation p(r∗)
smaller, greater or equal to zero?”—it computes the roots of
p, and runs the decision algorithm As on each of those roots.
This gives us a range of radii that must contain r∗. As the
technique progresses this range keeps shrinking. In the end,
it is either empty, in case the problem was unfeasible, or r∗

is the lower endpoint of the interval.
The running time required for this approach depends heav-

ily on how often we have to call the decision algorithm As.
If we can delay executing a call to As until we have many of
them, then we can handle this batch faster by using binary
search. That is, we can process m calls to As in O(Ts logm)
time, rather than O(Tsm) time. Since we call As for each
comparison involving r∗, this means we need to find batches
of independent comparisons that we can process at once. A
standard way to achieve this is to replace the (sequential)
decision algorithm that we run on r∗ by a parallel decision
algorithm Ap. If Ap uses P processors, then executing a sin-
gle step on each processor yields P independent comparisons
in total. We now emulate running Ap in lockstep. For each
step we spend O(P + Ts logP ) time. Thus, if Ap requires
Tp steps, then it takes O(TpP + TpTs logP ) time in total to
find r∗.

We can use our algorithm from the previous section as the
sequential decision algorithm As, by simply computing the
maximal length L∗ in a hotspot of radius r and checking if
L∗ ≥ L. So all that remains is to construct an analogous
parallel decision algorithm (which will show the existence of
an efficient sequential algorithm to compute r∗).

A Parallel Decision Algorithm. Let r be the given ra-
dius. We use the same approach as in the previous section:
we construct the subdivision S, and traverse all cells C to
compute ΥC and its maximum. Constructing S and its dual
graph G takes O(log log∗ n) time, using O(n2/ logn) proces-
sors [5]. The graph G has a node v for every face Fv of S,
and an arc (u, v) for each pair of adjacent faces Fu and Fv.

Next, we compute a spanning tree of G and its Euler tour
E = ε0, .., εm, with m = O(n2). This takes O(logn) time
using O(n2) processors [30]. Now let Υi denote the function
Υ in node εi, and let ∆i,j be the difference function between
Υi and Υj , that is, ∆i,j(c) = Υj(c)−Υi(c). For two consec-
utive nodes εi and εi+1 we can compute this function ∆i,i+1

without having computed Υi and Υi+1 since we know which
trajectory edge starts/stops to intersect H (or which edge
now intersects a different side of H). Once we have ∆i,j and
∆j,` we can obtain ∆i,` by combining the two functions. So,
the main idea is to compute function Υ0, and all functions
∆0,i to obtain the functions Υi. We now show that this can
be done using O(n2) processors in O(logn) time.

Lemma 3. Given O(n) processors, we can compute the
function Υ for a given node v of G in O(logn) time.

Proof. We use one processor for each trajectory edge e.
Each processor computes the function Υev(c) = ‖e ∩ H‖.
We then add these functions together in pairs of two, and
repeat this process until we have one function representing
Υ. This takes O(logn) steps.

Lemma 4. Given O(m) processors, with m ≥ n, and a
path E of length m, we can compute all functions Υi in
O(logm) time.

Proof. By Lemma 3 we can compute Υ0 in O(logn) =
O(logm) time. We now show how to compute all functions
∆0,i in O(logm) time in total. We then use one processor
for each i to compute Υi from Υ0 and ∆0,i in constant time.

We represent E as a balanced binary tree T . Each node
vi,j in T represents a subpath εi, .., εj . The leaves of T sim-
ply correspond to the singleton paths εi. We now compute
the functions ∆i,j for each internal node in the tree. Using
O(m) processors, starting with one in each leaf, this takes
O(logm) time. For a given leaf εi, we can compute ∆0,i by
traversing T from the root to εi: we sum the functions stored
at the left child of each node v we encounter, and add this
to the function stored at the leaf of εi. This takes O(logm)
time. Since we have O(m) processors, we can compute all
functions ∆0,i in parallel.

By Lemma 4 we can compute Υi for all nodes in E in
O(logm) = O(logn2) = O(logn) time using O(n2) proces-
sors. Once we have all functions Υi, we can use the same
tactic to compute the global maximum in O(logn) time.
Thus, we have:

Theorem 5. Given a threshold L, a radius r, and O(n2)
processors, we can decide if there is a hotspot H with center
c and radius r such that Υ(c, r) ≥ L in O(logn) time.

Computing a Minimum Size Hotspot. We use the
above decision algorithm together with the parametric search
technique. We stress that this yields a sequential algorithm
to compute H∗, since we emulate the execution of the paral-
lel algorithm during the parametric search. In general para-
metric search takes O(PTP + TPTS logP ) time. From The-
orem 2 we have TS = O(n2) , and from Theorem 5 we have
TP = O(logn) and P = O(n2). Plugging in these results
gives us:

Theorem 6. Given a threshold L, we can find a mini-
mum size hotspot H∗ with center c∗ and radius r∗ such that
Υ(c∗, r∗) ≥ L in O(n2 log2 n) time.



4. CONTIGUOUS LENGTH
In this section we focus on finding a hotspot containing a

longest contiguous subtrajectory.
Recall that T [s, t] is the subtrajectory between s and t.

With some abuse of notation we will also write T [p, q] =
T [tp, tq] for the subtrajectory between points p = T [tp] and
q = T [tq].

4.1 Fixed Radius
Let T ∗ = T [p, q] be a longest subtrajectory contained in

any hotspot of radius r. We will state and prove properties
of T ∗ that will help us to compute it efficiently. First we
make the simple observation that the starting point p of T ∗
will be on the boundary of H∗, with the one exception when
T ∗ starts at the start of the trajectory T . This exception
is easy to handle in O(n) time, so we ignore it from now on
and assume that T ∗ starts at a point p on ∂H∗.

Lemma 7. There is a hotspot H∗ that maximizes Φ for
which at least one vertex of T lies on the boundary of H∗.

Proof. Proof by contradiction. Assume that H∗ maxi-
mizes Φ, and there is no hotspotH with Φ(H) ≥ Φ(H∗) with
a vertex on ∂H. Since H∗ is optimal, the longest contiguous
subtrajectory T ∗ = T [p, q] in H∗ must touch two opposing
sides of H∗. Assume without loss of generality that these
sides are horizontal.

Let H′ = H∗ and let T ′ be the subtrajectory of T ∩ H′
that is (initially) T ∗. It is easy to see that we can shift
H′ horizontally—while keeping T ∗ inside it—until either a
vertex lies on ∂H′ or p lies on a corner of H′. In the former
case we immediately obtain a contradiction. In the latter
case, translateH′ while keeping the starting point p′ of T ′ on
the same corner ofH′ (moving the starting point of T ′ earlier
or later). Let φ(t) denote the length of T ′ as a function of
the starting time t = tp′ of T ′. Function φ has break points
when p′ or q′ crosses a vertex or when H′ gets a vertex of T ′
on its boundary. Since φ is (piecewise) linear, the translation
of H′ in at least one direction does not decrease the length
of T ′ until it gets a vertex on its boundary, a contradiction.
This completes the proof.

Corollary 8. For starting point p = (px, py) of T ∗, and
some vertex v = (vx, vy) of T we have that (i) px ∈ {vx −
r, vx, vx + r} or py ∈ {vy − r, vy, vy + r}, and (ii) v ∈ T ∗.

We now examine all vertices and all six cases for these
vertices, knowing by Corollary 8 that one of these will give
us p, the starting point of T ∗ with the property that the
corresponding H∗ has a vertex of T on its boundary.

Let v be some vertex of T and assume we are testing the
case where py = vy − r; all other cases are symmetric or
handled analogously. In this case, the unknown point p lies
on the bottom side of H∗ and v lies on the top side. Fur-
thermore, tp is earlier than tv, and tp is the last point before
v with y-coordinate vy − r. Assume we have the last point
before v with y-coordinate vy − r and call it p′. If [tp′ , tv]
contains any point with y-coordinate greater than vy, then
p′ is not a candidate for the start p of the optimal subtrajec-
tory T ∗, otherwise we proceed to compute a maximal time
interval I starting at p′ such that I has its y-coordinates
in the range [vy − r, vy]. Suppose that we have I = [p′, q′].
Then we test whether I satisfies the condition that the x-
extent of T [p′, q′] is at most r, and in that case T [p′, q′] is a

candidate to be T ∗. After testing all vertices v and all six
cases, we choose the longest one as T ∗.

We need to find an efficient way to implement the query
for p′, the query for q′, and the test whether T [p′, q′] has an
x-extent of at most r. Suppose we define a polygonal line
whose horizontal axis is time and its vertical axis is the y-
coordinate, see Fig. 2. Assume that we have a horizontal de-
composition of this polyline, preprocessed for efficient planar
point location. Effectively this means that we can perform
horizontal ray shooting queries in O(logn) time. A horizon-
tal ray shooting query to the left from a point (t̂, ŷ) asks
for the most recent time before t̂ where the trajectory has
y-coordinate ŷ. Similarly, a ray shooting query to the right
asks for the earliest time after t̂ where the trajectory has
y-coordinate ŷ. Hence, to determine p′ given v, we perform
a ray shooting query to the left from the point (tv, vy − r),
giving us (tp′ , p

′
y) and therefore p′. Then we perform a ray

shooting query to the right from (tp′ , p
′
y + r) = (tp′ , vy). If

the ray hits an edge before tv then p′ is not a candidate
start point and we stop. If the ray hits v and T extends
upwards after v, then [tp′ , tv] is a candidate time interval
that could give T ∗. Otherwise, v is a local maximum of the
y-coordinate and we perform two ray shooting queries to the
right: from (tv, vy) and from (tv, vy − r). The earliest time
of the two answers gives us q′ and thus the interval I to test.

Finally, we test whether the x-extent of I is at most r.
This can be done with an augmented binary search tree that
stores the edges of T ordered along T in its leaves. Every in-
ternal node is augmented with two values: the minimum and
maximum occurring x-coordinate of the edges in the leaves
below it. Since this is a standard application of tree aug-
mentation, we describe it no further and note that interval
I can be queried in O(logn) time for its x-extent [13].

ttv tq′tp′

vy − r

vy

Figure 2: Determining the earliest starting time tp′ , and
the latest ending time tq′ such that T [p′, q′] lies in the slab
[vy − r, vy].

Running Time Analysis. In the preprocessing we build
the ray shooting structures (for (t, y) and (t, x)) and aug-
mented search trees (for x and for y) in O(n logn) time.
Then for every vertex v, we can find candidate intervals in
O(logn) time. We conclude:

Theorem 9. Given a radius r, we can find a hotspot H∗
with radius r that maximizes Φ in O(n logn) time.

4.2 Fixed Length
We are given a threshold L on the minimum required tra-

jectory length in the hotspot, and we want to find a smallest
hotspot H∗ that contains a subtrajectory of length L.

Let φ(t) be the minimum radius of a hotspot H containing
a subtrajectory T [p, q] of length L that enters H, and thus
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Figure 3: The smallest hotspot for several different starting times. The offset in length ∆ is indicated in purple, and BB(u, v)
in orange. (a) and (b) correspond to break points of a piece i of φ. (c) is a hotspot on piece i+ 1.

starts, at time t = tp, and let u and v be the first and the
last internal vertex in T [p, q], respectively. We denote the
bounding box of a subtrajectory T [a, b] by BB(a, b). We now
prove:

Lemma 10. The function φ is piecewise linear. The O(n)
break points of φ correspond to hotspots H such that: (i)
p is a vertex of T , (ii) q is a vertex of T , (iii) px (py)
coincides with the minimum or maximum x-coordinate (y-
coordinate) of BB(u, v), (iv) qx (qy) coincides with the min-
imum or maximum x-coordinate (y-coordinate) of BB(u, v),
and (v) px = qx or py = qy.

Proof. We start by showing that φ is linear. Let e be the
edge containing p and f the edge containing q. If we move
point p along e by some small amount ∆, the length inside
the hotspot decreases linearly in ∆. To maintain length L
inside H, point q has to move along f (see Fig. 3). The
required increase in length on f is identical to the decrease
in length on edge e, namely ∆. It follows that p and q both
move linearly in ∆. Therefore, φ is linear as well.

Clearly, φ is piecewise. Next, we show that the break
points of φ are of types (i) to (v). At any time t, a hotspot
H with radius φ(t) has two opposite sides, s1 and s2, that
both contain an internal vertex or an end point of T [p, q].
As time t varies, s1 and s2 move. Function φ has a break
point if and only if the movement of s1 and s2 changes. This
movement changes when the movement of p and q changes,
and when the objects defining s1 and s2 change (e.g. s1
was defined by p, but is now defined by an internal vertex
of T [p, q]). The former changes occur when p and q are at
trajectory vertices, thus yielding break points of type (i) and
(ii). The latter changes occur exactly at events of type (iii)
to (v), thus yielding break points of type (iii) to (v).

Finally, we argue that there areO(n) break points. Clearly,
there are O(n) break points of type (i) and (ii). It follows
that there are also only O(n) pairs of edges (e, f) such that
p lies on e and q on f . For each such a pair there are at
most O(1) break points of type (v). Point p (q) encounters
at most O(1) events of type (iii) (type (iv)) per edge. So the
number of break points of these types is O(n) as well.

Note that φ is not continuous. In particular, φ is not de-
fined for times t such that T [t] lies in the interior of BB(u, v),
where u and v are the first and last interior vertices in sub-
trajectory of length L starting at time t.

Since φ is piecewise linear, its minimum occurs at a break
point. So, to find a smallest hotspot containing length L,
we compute all break points of φ and evaluate φ at each of
them.

We can easily find all break points of φ by “sweeping” T
with a subtrajectory T [p, q] of length L. To quickly find the
bounding box and the length of a subtrajectory we represent
T as a balanced binary search tree. Each leaf node repre-
sents a trajectory edge e, and stores e, its bounding box,
and its length. An internal node νa,b represents the subtra-
jectory T [a, b] from vertex a to vertex b, and stores BB(a, b)
and the length of T [a, b]. Building this tree takes O(n logn)
time, and allows O(logn) time queries. Once we have the
bounding box and the length of T [u, v], we can construct
and evaluate φ in constant time. We have O(n) events in
total, each of which we can handle in O(logn) time. Hence,
we can find the global minimum in O(n logn) time. Thus:

Theorem 11. Given a threshold L, we can find a min-
imum size hotspot H∗ such that Φ(H∗) ≥ L in O(n logn)
time.

5. RELATIVE LENGTH
We now focus on finding a hotspot H∗ with center c∗

and radius r∗ that maximizes the relative trajectory length
Ψ(H∗) = Ψ(c∗, r∗) = Υ(c∗, r∗)/2r∗.

Given a hotspot H, a point p ∈ H, and a radius r. Let
Hrp be the hotspot H, scaled with p as origin and such that
its radius is r. Fix a point p, and consider Ψ as a function
of r. More formally, let ψp(r) = Ψ(Hrp).

Lemma 12. ψp is a piecewise hyperbolic function. The
pieces of ψp are of the form c(1/r) + d, for c, d ∈ R, and the
break points of ψp correspond to hotspots H such that: (i) a
vertex of T lies on a side of H, or (ii) a corner of H lies on
an edge of T .

Proof. Since Υ is a piecewise function, so are Ψ and ψp.
It is easy to see that the break points of ψp are the same
as those of Υ. We now show that each piece of ψp is of the
form c(1/r) + d, with c, d ∈ R. Consider a piece of ψp, and
let E be the set of contributing edges on that piece. Let
A ⊆ E be the set of edges that are completely contained in
any hotspot corresponding to this piece, and let B = E \ A
be the set of remaining edges. For each edge e in B the



length in Hrp changes linearly in r. Let λe(r) denote this
length. We then have that

ψp(r) =
Υ(Hrp)

2r
=

∑
e∈A ‖e‖

2r
+

∑
e∈B λe(r)

2r
= a

1

r
+
b̂r + b

r

= (a+ b)
1

r
+ b̂,

where a, b, and b̂ are constants. The lemma follows.

Let V(H) denote the set of sides of H containing a vertex,
and let v(H) = |V(H)|. Similarly, let E(H) denote the
set of corners of H that lie on a trajectory edge, and let
e(H) = |E(H)|.

Lemma 13. There is a hotspot H∗ that maximizes Ψ such
that v(H∗) + e(H∗) ≥ 3.

Proof. Proof by contradiction. Assume that H∗ is a
hotspot that maximizes Ψ, with v(H∗) + e(H∗) < 3, and
that there is no hotspot H with Ψ(H) ≥ Ψ(H∗) and v(H) +
e(H) > v(H∗) + e(H∗).

We now show that we can scale or translate H∗ without
decreasing Ψ and while keeping V(H∗) and E(H∗) the same
until (i) there is a new vertex on a (new) side of H∗ or, (ii)
there is an new edge through a new corner of H∗. This leads
to a contradiction, and thus proves the lemma.

Let H′ = H∗, and consider the relative length ψ(a) =
Ψ(H′) in H′ as a function of some parameter a. We choose a
to be a translation if there are two opposing sides in V(H∗),
and a scaling otherwise. In both cases we will show that (1)
ψ is a piecewise function, (2) H∗ corresponds to an interior
value of a piece p of ψ, (3) one of the endpoints a′ of p has
ψ(a′) ≥ Ψ(H∗), and (4) the break points of ψ correspond to
hotspots H′ such that (i) there is a vertex on a side of H′ or,
(ii) there is an edge through a corner of H′. It follows that
the hotspot H′ corresponding to a′ has Ψ(H′) ≥ Ψ(H∗) and
v(H′) + e(H′) > v(H∗) + e(H∗), as desired.

Consider the case in which V(H∗) contains two opposing
sides s1 and s2. Assume without loss of generality that
s1 and s2 are horizontal. We now choose a to be the x-
coordinate of the center of H′. We leave the radius of H′
fixed, so ψ is a piecewise linear function in a. This proves
(1) and (3). The break points of ψ correspond to hotspots
such that a vertex of T lies on a vertical side of H′ or a
trajectory edge intersects a corner of H′. This proves (4).
Item (2) follows since v(H∗) + e(H∗) < 3.

Consider the case in which V(H∗) does not contain two
opposing sides. Since v(H∗) + e(H∗) < 3, there is a point
q ∈ H∗ such that if we scale H′ = H∗ by a small amount
with q as origin, the vertices on ∂H′ stay on the same side
as in H∗, and the edges through corners of H′ go through
the same corners in H∗. Let a be the radius of H′ during
this scaling. Thus, ψ(a) = ψq(a). Items (1), (3) and (4) now
directly follow from Lemma 12. Item (2) again holds since
v(H∗) + e(H∗) < 3.

When a corner c of H lies in the interior of an edge e =
uv, that is, c 6= u 6= v, and e ∩ H = c, e touches H, see
Fig. 4. Let Ent(H) denote the set of corners of H that lie
on trajectory edges that do not touch H. That is, for each
corner c in Ent(H), the edge through c does not touch H.
Let ent(H) = |Ent(H)|.

Lemma 14. There is a hotspot H∗ that maximizes Ψ such
that v(H∗) + ent(H∗) ≥ 3.

e
f

Figure 4: Edge e touches the hotspot, edge f does not.

Proof. It follows from Lemma 13 that there is a hotspot
H∗ maximizing Ψ, with v(H∗) + e(H∗) ≥ 3. We now show
by contradiction that v(H∗) + ent(H∗) ≥ 3.

Let r∗ be the radius of H∗, and let e be an edge that
touches H∗ in corner c. Hence, c ∈ Ent(H∗). If no such
edge, and thus no such corner, exists then we immediately
arrive at a contradiction. If e does exist, we will show that
this contradicts the fact that H∗ maximizes Ψ.

There is a point p such that we can scale H∗ while main-
taining a total of two objects o1 6= c and o2 6= c in V(H∗)
and E(H∗). Now consider the piecewise hyperbolic function
ψp (Lemma 12). Since H∗ is optimal, the value r∗ is a break
point of ψp. Let [ř, r∗] and [r∗, r̂] be the pieces incident to

r∗, and let ψ̌ and ψ̂ denote the function ψp restricted to
their corresponding pieces.

Since H∗ maximizes Ψ we have ψ̌(r) = −a 1
r

+ b, and

ψ̂(r) = c 1
r

+ d, for some a, c ≥ 0 and b, d ∈ R. We now
consider the length of edge e in the hotspot as a function of
r on the interval [r∗, r̂]. Since this length λe(r) is positive,
we have λe(r) = gr − h, for some g, h ≥ 0. This gives us

ψ̂(r) = ψ̌(r) +
λe(r)

2r
= ψ̌(r)− h

2r
+
g

2
= (−a− h

2
)
1

r
+ b+

g

2
.

Hence c = (−a− h/2) < 0. Contradiction.

An Algorithm to Maximize Ψ. By Lemma 14 there
are three objects, vertices or edges, bounding an optimal
hotspot. Hence, there is a hotspot maximizing Ψ such that

• ∂H∗ contains three vertices on three different sides,
• ∂H∗ contains two vertices on different sides and one

edge intersects a corner of H∗,
• a vertex lies in a corner of H∗, and there is either

a second vertex on ∂H∗ or an edge going through a
different corner of H∗,
• ∂H∗ contains one vertex and two edges intersects cor-

ners of H∗, or
• three edges intersect corners of H∗.

In all cases the edges do not touch H∗.
We now compute a hotspot maximizing Ψ in each of these

cases, and then simply pick a best one. In each case, our
global approach is to fix two of the three objects. This fixes
two of the three degrees of freedom. We then express Υ as a
function of the remaining degree of freedom a. This function
Υ is piecewise linear in a, and will have events/break points
when a third object bounds the hotspot H. Thus, we can
find an optimal solution by evaluating Υ and Ψ at each of
the break points.

How we find all break points differs per case, but we will
show that in each case we can find the O(n) break points in
linear time. Computing and maintaining Υ also takes linear
time in total, since each update can be handled by adding
and/or subtracting a simple linear function that describes



the change at that break point. There are O(n2) pairs of
objects that we can fix, so we can handle each case in O(n3)
time in total.

We use the following simple data structures throughout
the different cases. We construct two lists Lx and Ly of all
vertices, Lx sorted on increasing x-coordinate, and Ly sorted
on increasing y-coordinate. Furthermore, we explicitly build
the arrangement A on the supporting lines of the edges of
T . With this arrangement we can now answer the following
queries in O(n) time. Given a query (half-)line, or ray, ` find
all trajectory edges intersected by ` in the order in which
they are intersected. We do this by simply walking along `
in the arrangement A. Since the zone of ` in A has linear
complexity, such a query takes O(n) time.

u

v

2r
`u `v

Figure 5: The three vertices case.

Three Vertices. There is an optimal hotspot such that
three sides contain a vertex. Two of these sides must be
parallel. Assume that these two sides are contained by the
vertical lines `u and `v (the case that `u and `v are horizontal
is handled analogously), and that these lines are at distance
2r from each other (see Fig. 5). These two vertical lines
bound a vertical slab, we now place a square hotspot H with
radius r at the bottom of this slab, and shift it upwards. Let
a be the the y-coordinate of the top of H, and consider Υ
as a function of a. Each time a side of H hits a vertex, or a
corner of H hits a trajectory edge, we get a break point.

Two Vertices, One Edge. Let u and v be the vertices on
∂H∗. When u and v lie on opposing sides of H∗ we can use
the same approach as in the previous case. When u and v lie
on neighboring sides we use the following approach. Assume
without loss of generality that u lies on the bottom side of
H∗ and v on the left side of H∗. This means that the bottom
left corner o of H∗ is uniquely defined by u and v.

We start with an arbitrarily small empty hotspot H with
its bottom left corner at o. We now scale H with o as ori-
gin. Let a denote the scaling parameter, and consider Υ
as a function of a. The function Υ combinatorially changes
when any side of H hits a vertex, or any corner of H hits a
trajectory edge. We find these times by querying A with a
horizontal ray, a vertical ray, and a diagonal ray starting at
o, and merging their results with Lx and Ly (see Fig. 6).

One Corner Vertex. Let v be the vertex of T on a corner
of H∗. We define o = v, and then handle this case analogous
to the previous case.

One Vertex, Two Edges. Let v be the vertex on ∂H∗, and
let e be the edge through a corner of H∗. Assume without
loss of generality that v lies on the bottom side of H∗. We

u

v

o

Figure 6: The two vertices, one edge case.

distinguish two subcases: e intersects a bottom corner of
H∗, or e intersects a top corner of H∗.

In the first case, the horizontal line through v intersects
e in a point o. We again consider scaling H with origin o,
so this case is handled analogously to the case where there
were two vertices on ∂H∗.

In the second case, e intersectsH in a top corner c1. Let c2
be the other top corner. All hotspots that have corner c1 on
e, and u on the bottom side, have their other upper corner,
c2, on a line m (see Fig. 7). We consider these hotspots and
the function Υ by increasing size a. We find the break points
as follows. To find all edges that could intersect H in corner
c2, we query A with m, oriented such that the hotspots H
get larger along m. We find the intersections with other
corners, ordered by increasing size a, by querying A with
two horizontal half-lines starting at v. We then merge these
three lists with the sorted lists of vertices to get a list of all
break points.

m

e

v

Figure 7: The one vertex, two edges case.

Three Edges. Let e, f , and g be the edges through corners
of H∗, of which e and f are through opposing corners ce and
cf . Let `e and `f be the lines containing e and f , respec-
tively (see Fig. 8). Consider all hotspots that have e through
corner ce and f through cf . The remaining two corners of
these hotspots lie on half-lines m1 and m2, starting at the
intersection point p of `e and `f .

We now consider Υ as a function of the size a of the
hotspots that have e through corner ce and f through corner
cf . To compute the break points of Υ, we query A with m1,
m2, `e and `f . We merge these lists with the sorted lists of
vertices to get all break points, ordered on increasing size a.

We now conclude:

Theorem 15. We can find a minimum size hotspot H∗
that maximizes Ψ in O(n3) time.
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Figure 8: The three edges case.

6. EXTENSIONS
In this section we briefly discuss various extensions to our

algorithms, in particular, multiple entities and differently
shaped hotspots.

Multiple Entities. Suppose that instead of one moving
entity with one trajectory T , we have many entities, and
thus many trajectories T1, .., .Tm. Can we still find a hotspot
H that maximizes the length inside it, or minimizes the size
required to get at least a certain length? Our algorithms
simply treat trajectory T as a set of line segments. So they
are immediately applicable to multiple trajectories as well.

Convex Polygonal Hotspots of a Given Shape. The
algorithms that use the total length (the ones from Sec-
tion 3), are still applicable when the hotspot is a convex
polygon of a given shape. If the polygon has k vertices, each
trajectory edge produces O(k) line segments in subdivision
S. Thus, S may have a total complexity of O(k2n2). We
then solve the fixed radius version (for an appropriate defi-
nition of radius) in O(k2n2) time. Similarly, the fixed length
version takes O(k2n2 log2(kn)) time.

If we consider the relative length inside H, Lemmas 13
and 14 still hold, even if H is a convex polygon of complexity
k of a given shape. This means that there are still three ob-
jects “bounding”H∗; one for each parameter specifying the
position of H∗. So, the global approach of our algorithm is
still applicable. Which, and how many, ray shooting queries
we have to perform to obtain the break points depends on
the shape of the hotspot.

For the algorithms that use the contiguous length/time
it is not immediately clear how to extend them to work for
arbitrarily, but fixed, shaped polygons. We can extend the
solution for fixed r, in case H is a regular k-gon.

Other Types of Hotspots. When the hotspot has curved
boundaries, we can no longer maximize Υ, Φ, and Ψ, as de-
scribed in Section 2. Hence, our algorithms do not easily
extend to these cases. When the hotspot H is not convex,
the intersection of a single edge with H may consist of sev-
eral line segments. This will increase the time required to
evaluate Υ, Φ, and Ψ. Furthermore, this may lead to a
large increase of complexity in the parameter space. When
the shape of the hotspot is not predefined it is not clear how
define the problem as a maximization problem. Hence, in
this case we cannot directly apply our algorithms either.

7. CONCLUDING REMARKS
Hotspots are small regions where a moving entity spends

a significant amount of time. We presented algorithms to
locate optimal hotspots from trajectory data based on path
length rather than time, but versions based on time require
essentially the same algorithms and the same efficiency is
obtained. Five variations of the problem were considered.
When all visits to the hotspot count our algorithms take
roughly quadratic time: O(n2) time if we want to maximize
the time in a fixed size square hotspot, and O(n2 log2 n) time
if we want to minimize the size of the hotspot for a fixed
time the entity spends inside. If we are interested only in
the longest contiguous visit, we can solve both variations in
O(n logn) time. Maximizing the relative time inside, com-
pared to the size of the hotspot, takes O(n3) time. Our algo-
rithms can find multiple hotspots by removing the edges and
edge parts that lie inside the hotspot found, and repeating
the algorithm on the remaining edges, although for the two
contiguous versions this may not give the desired results.

There are various heuristic extensions possible to let the
algorithm with cubic runtime be much faster in practice.
For all algorithms we can apply trajectory simplification to
improve the efficiency if needed, because our methods can
handle irregularly sampled data without problems (unlike
point-based methods).

Our algorithms directly extend to multiple entities. How-
ever, when multiple entities are considered several other vari-
ations of the problem exist. For example, find a smallest
hotspot H such that all entities spend at least L time in H.
We can again consider the total time, the longest contiguous
time, and we can even vary whether or not the entities need
to be present at the same time(s). We can also consider only
the longest visit to the hotspot for each entity, and try to
maximize the sum of those durations over all entities. All
these variations are interesting options for future work.
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