
Segmentation of Trajectories on Non-Monotone Criteria

Boris Aronov∗ Anne Driemel† Marc van Kreveld† Maarten Löffler† Frank Staals†

Abstract

In the trajectory segmentation problem we are given
a polygonal trajectory with n vertices that we have to
subdivide into a minimum number of disjoint segments
(subtrajectories) that all satisfy a given criterion. The
problem is known to be solvable efficiently for monotone
criteria: criteria with the property that if they hold on
a certain segment, they also hold on every subsegment
of that segment [4]. To the best of our knowledge, no
theoretical results are known for non-monotone criteria.

We present a broader study of the segmentation problem,
and suggest a general framework for solving it, based
on the start-stop diagram: a 2-dimensional diagram
that represents all valid and invalid segments of a given
trajectory. This yields two subproblems: (i) computing
the start-stop diagram, and (ii) finding the optimal
segmentation for a given diagram. We show that (ii) is
NP-hard in general. However, we identify properties of
the start-stop diagram that make the problem tractable,
and give polynomial-time algorithm for this case.

We study two concrete non-monotone criteria that arise
in practical applications in more detail. Both are based
on a given univariate attribute function f over the
domain of the trajectory. We say a segment satisfies an
outlier-tolerant criterion if the value of f lies within a
certain range for at least a given percentage of the length
of the segment. We say a segment satisfies a standard
deviation criterion if the standard deviation of f over the
length of the segment lies below a given threshold. We
show that both criteria satisfy the properties that make
the segmentation problem tractable. In particular, we
compute an optimal segmentation of a trajectory based
on the outlier-tolerant criterion in O(n2 log n+kn2) time,
and on the standard deviation criterion in O(kn2) time,
where n is the number of vertices of the input trajectory
and k is the number of segments in an optimal solution.

∗Dept. of Computer Science and Engineering, Polytechnic
Institute of NYU, United States; aronov@poly.edu
†Dept. of Information and Computing Sciences, Utrecht Univer-

sity, the Netherlands; {a.driemel, m.j.vankreveld, m.loffler,

f.staals}@uu.nl

1 Introduction

Trajectory data is ubiquitous today. Researchers in
different fields study the movements of animals [3, 5, 11],
hurricanes [15], traffic [12], or other moving objects [9] by
analyzing their spatio-temporal trajectories. Movement
data is often collected using GPS, and large sets of
such data have been collected in the last few years. A
trajectory is usually modeled as a continuous function
from a time interval (the domain) to the plane, but
is collected as a discrete sequence of time-stamped
locations. By linearly interpolating the locations we
obtain a continuous piecewise-linear curve as the image
of the function. We can derive attributes from this
data: functions defined on the domain of the trajectory.
For example speed, heading, or acceleration. In some
applications, trajectories may also have additional data
stored with each time stamp. Some of these attribute
functions, such as speed and heading, are piecewise
constant when we assume linear interpolation.

Segmentation. An important analysis task is to
segment a trajectory: partition the input trajectory
into a minimum number of segments such that each
segment satisfies a given criterion [13]. A criterion is
usually defined based on an attribute of the trajectory.
For example, for the attribute “speed,” we could segment
the trajectory such that the minimum and maximum
speed within any segment differ by at most h km/h, or
by at most a factor of two. Figure 1 shows an example
segmentation of a trajectory into segments of similar
speed. This way, a segment of the trajectory represents a
contiguous subtrajectory for which a property is stable in
some sense. This aids the automated analysis, since such
segments are often meaningful features of the trajectory.
In the analysis of the trajectories of birds, for example,
the goal is to extract the stretches where a certain
activity is observed, such as soaring, directional flight,
sleeping, etc. For more examples, see also [14, 17]. One
may draw the comparison to the segmentation of an
image into contiguous patches of similar color or texture.
In these problems one is also interested in decomposing
the image into meaningful portions, which represent
objects shown [10].

0.0 0.4 0.8 1.00.00.1

0.3

0.4

0.6 0.8

0.9
1.0

(a) (b)

Figure 1: (a) A trajectory, obtained by linearly interpolating seven locations measured at irregular times. (b) The
speed along the trajectory is a piecewise-constant function. We may divide the trajectory into three segments with
“similar” speed: [0.0, 0.4], [0.4, 0.8], [0.8, 1.0].

Depending on the coarseness of the data, we distinguish
two segmentation problems: continuous and discrete.
If the data has a fine resolution and the interpolation
between two consecutive points is truthful, we want
to segment continuously along the interpolated curve.
In practice, it may happen that long irregular gaps
exist between consecutive data points. For example,
when tracking migrating birds, a GPS receiver will be
programmed to use a lower frequency to save battery
time and storage space as soon as migration starts.
In this case, one may want to resort to a discrete
segmentation, which groups consecutive data points into
subsets (segments) that satisfy the criterion.

We address both continuous and discrete segmentation
in this paper. Algorithmically, continuous segmentation
is much more challenging than discrete segmentation.
For discrete segmentation we study a more general
weighted version of the problem. One could think of
different applications of the weighting. For example,
if the sampling of a trajectory was at irregular time
intervals, one could weight the data point by the total
duration that the measurement was valid. Studying this
slightly more general problem does not influence the
running times of our algorithms.

Previous research on similar segmentation problems has
been done in animal movement studies [9, 14] and time-
series analysis [2, 6, 16], see also [18]. These solutions
provide no guarantees for individual segments in the
segmentation. Instead, they are either heuristics or they
optimize a global error criterion when a desired number
of segments is specified. In the latter case, dynamic
programming is a common approach [13]. The one
exception is the research of Buchin et al. [4], see the
discussion below.

Monotonicity. A criterion C is monotone if it has
the property that if C is satisfied on some segment S of
a trajectory, then it is also satisfied on any subsegment
S′ ⊆ S. Buchin et al. [4] provide a framework for
segmenting trajectories based on a monotone criterion
or a combination of several monotone criteria. Many

criteria are monotone by nature. However, if the
trajectory data is noisy, or a type of behavior is briefly
interrupted, it is desirable to weaken the monotonicity
requirement. For example, instead of requiring that the
difference in speed within a segment is at most h, we
could require that this is the case for at least 95% of the
time within each segment. A short burst in speed does
not cause more segments in the segmentation with such
a criterion. Another example is using a threshold for the
standard deviation of speed within a segment.

Our results. To segment a trajectory based on non-
monotone criteria, we introduce the notion of the start-
stop diagram. This allows us to split the problem into
two sub-problems: computing the start-stop diagram
and computing an optimal segmentation for a given
start-stop diagram. We show that the latter problem
is NP-hard in general. However, a polynomial-time
solution exists if the start-stop diagram has certain
properties. We identify these properties in Section 3 and
present algorithms to compute an optimal segmentation.
In Section 4, we consider combining multiple criteria
and we see how this affects the properties of the start-
stop diagram. In Section 5 we present lower bound
constructions which show the tightness of some of
our upper bounds. Section 6 considers the issue of
computing the start-stop diagram; we show how to
efficiently compute the start-stop diagram for two specific
criteria. One such criterion requires that the minimum
and maximum values of a piecewise-constant function f
on each segment have at most a given difference, while
allowing a certain percentage of outliers. The second
criterion requires that on each segment the standard
deviation of f is below a certain threshold on each
segment. We show that these criteria satisfy the
properties that make the segmentation problem tractable,
and in both cases we provide solutions to the discrete
and the continuous segmentation problem.

1.1 Discrete vs. continuous segmentation

As we will see, the continuous segmentation problem is
much harder than the discrete version. Therefore, the

Figure 2: A discrete segmentation input (points) and its
continuous analogue (line segments).

algorithm for continuous segmentation is also slower than
the one for discrete segmentation. So perhaps a natural
question is if continuous segmentation has advantages
over discrete segmentation.

We now show that this is indeed the case: comparable
situations can give a significantly different number of
segments in an optimal segmentation. Consider the
discrete function f(i) = i for all i ∈ {1, . . . , n} and the
very similar continuous function f(x) = bx + 1

2c for
x ∈ [12 , n+ 1

2] (see Figure 2 for n = 5).

Suppose we segment on standard deviation with thresh-
old 0.499. Then the discrete segmentation must take
each index separately, because two consecutive indices
give a standard deviation of 0.5 and this only gets higher
if we take longer segments. The continuous segmentation
can take as the first segment the first constant part with
f(x) = 1 and nearly all of the second part with f(x) = 2.
Similarly, the second segment can take the small remain-
ing part where f(x) = 2, the entire part where f(x) = 3,
and nearly all of the part where f(x) = 4 (but slightly
less than before). The construction scheme leads to
nearly half as many segments in the minimal continuous
segmentation as in the minimal discrete segmentation.

2 General Approach

We study the problem of segmenting a trajectory with
respect to a criterion. In the continuous case, this
problem can be defined as follows. We define a trajectory
T as a function from an interval I = [0, 1] to R2 (or
Rd) and a subtrajectory, also called segment, T [a, b] as
the function restricted to the subinterval [a, b] ⊆ I. A
criterion C is a function C : I × I → {True, False},
which is defined on all possible segments of T . We
say an interval [a, b] ⊆ I satisfies a criterion C if
C(a, b) = True; in this case we call the segment valid. A
partitioning of I (or of T) into non-overlapping segments
whose union covers I is called a segmentation. A
segmentation of size k can be denoted by its segments
[τ0, τ1], [τ1, τ2], . . . , [τk−1, τk]; τ0 = 0 and τk = 1. A

segmentation is valid if and only if all of its segments are
valid, and segmenting a function refers to partitioning
into valid segments. We say a valid segmentation
is minimal (optimal) with respect to C if its size is
minimum; the segmentation problem is to compute a
valid minimal segmentation. We will often omit the word
“valid” because only valid segmentations are useful.

A criterion is often based on an attribute function
f : I → R that has the same domain I as T , for example
the function that maps time to speed at that time.
A segmentation of I based on the function f trivially
induces a segmentation of T (see Figure 1), therefore we
may use the term “segmenting f” to denote the resulting
segmentation. We assume that f is piecewise constant
and we call the points where the value of f changes
the breakpoints. The portions between consecutive
breakpoints, where f stays constant, are called pieces.

The discrete segmentation problem is defined analogously.
Here, a function f : U → R, where U = {1, . . . , n} is an
index set, is given. A segmentation is a partition of
U into disjoint contiguous subsequences called discrete
segments. The discrete segmentation problem on a given
criterion is to compute a segmentation into a minimum
number of valid discrete segments. We will address the
weighted version: f is given as a sequence S = s1, . . . , sn
of pairs si = (vi, wi), where vi is the value of piece i
and wi is its weight. Values and weights influence the
criterion and therefore the validity of segments.

2.1 The start-stop diagram

To compute a minimal segmentation of f we define
the start-stop diagram. Consider the parameter space
of the set of subintervals of I. For any candidate
segment [a, b], we associate the start parameter a
with the horizontal axis and the stop parameter b
with the vertical axis in the diagram. For continuous
segmentation, any point (a, b) in this diagram, with
a < b, represents a candidate segment. Thus, the set
of candidate segments is represented by the points in
the upper left triangle of the unit square. The set of
points which represent candidate segments that satisfy
the criterion defines the free space in the start-stop
diagram. The remaining points constitute the forbidden
space. A segmentation of I into a sequence of segments
[τ0, τ1], [τ1, τ2], [τ2, τ3], . . . , [τk−1, τk]; τ0 = 0 and τk = 1,
corresponds to a staircase in the start-stop diagram
whose convex vertices correspond to the points (τi, τi+1)
and whose concave vertices lie on the main diagonal.
Note that a segmentation is valid if and only if all
convex vertices lie in the free space (see Figure 3(a)
for an example). The size of a staircase, that is, the
number of convex vertices, corresponds to the size of

(a) (b) (c)

(0, 0)

(1, 1)

start

stop

C + a0

2C + a0

3C + a0 + a2

s0

s1

s2

C

t5

t4

t3

t2

t1

t0
t5t4t3t2t1t0

Figure 3: (a) The start-stop diagram and a valid segmentation into four segments. (b) Reduction from subset sum
to the abstract segmentation problem. The staircase shows the sum a0 + a2. (c) The subdivision of the start-stop
diagram into cells according to the breakpoints of f .

the segmentation. The start-stop diagram is reminiscent
of the free space diagram used to compute the Fréchet
distance [1]; however, there one is interested in a path
that stays inside the free space entirely.

For discrete segmentation, we consider the start-stop
matrix, a simplification of the start-stop diagram that
is an n × n matrix B with Boolean values, where
the entry B(i, j) at the ith column and jth row from
below corresponds to the value of the criterion function
at (i, j).1

2.2 Segmenting in the discrete case

In the discrete case it is relatively easy to compute a
minimal segmentation by using dynamic programming.
In fact, if one treats B(·, ·) as the adjacency matrix
of an unweighted directed acyclic graph, a minimal
segmentation corresponds precisely to a shortest path
from 1 to n and can be found in O(n2) time [7].

Theorem 2.1. Given an n× n start-stop matrix, one
can check if a minimal discrete segmentation exists, and
if so compute it, in O(n2) time and space.

2.3 Segmenting in the continuous case

Continuous segmentation is much harder. In the abstract
segmentation problem, we are given a decomposition
D of the triangle spanned by (0, 0), (0, 1) and (1, 1)
into points, a-monotone bounded-degree curve segments
(with horizontal axis a), and faces, each of which is
marked either free or forbidden. Let n be the total

1Usually a matrix is indexed by row first and column second.

We switch the indices to be consistent with the continuous case,
and because it feels more natural in light of the application.

complexity of D. In the resulting start-stop diagram, we
need to find a staircase that represents a valid, minimal
segmentation. We show that even testing the existence
of a valid segmentation is already NP-hard.

Theorem 2.2. The abstract segmentation problem is
NP-hard.

Proof. We reduce from Subset-Sum. Let a0, . . . , an−1
be a set of positive integers and let B be the desired
subset sum. We generate an instance of the abstract
segmentation problem by constructing n+1 line segments
in the start-stop diagram; these line segments are
precisely the free space.

Let A =
∑n−1
i=0 ai and C = A+ 1. We generate a start-

stop diagram of size [0, (n+ 1)C+B]× [0, (n+ 1)C+B].
One line segment s of the free space has its endpoints at
(0, C) and at (nC +B, (n+ 1)C +B) (see Figure 3(b)).

For each ai we create a line segment si with endpoints
(iC, (i + 1)C + ai) and (iC + A, (i + 1)C + ai + A).
This segment lies ai units vertically above the first line
segment s in the start-stop diagram. The placement of
the segments is such that each staircase must choose to
have its first convex vertex on s or s0, its second convex
vertex on s or s1, and so on. Each subsequent step places
the concave vertex C units further along the diagonal
if s is chosen, and C + ai units if si is chosen. Each
staircase that ends at ((n+ 1)C +B, (n+ 1)C +B) has
exactly n+1 convex vertices, the last one necessarily on s.
Furthermore, we can end at ((n+1)C+B, (n+1)C+B) if
and only if the chosen si are such that the corresponding
values ai sum up to B.

The length of the segments si is chosen so that we can
select si no matter what segments have been picked

(a) (b)

`

(c) (d)

`

Figure 4: (a) A verticonvex cell. (b) A tunnel cell. (c) Any row of verticonvex cells produces at most two
k-reachable intervals. (d) A tunnel cell can produce more than two k-reachable intervals.

before. At the same time, the step size of at least C
in every step makes sure that we cannot make more
than one step on the same si. Clearly the reduction is
polynomial. 2

3 Solving the Segmentation Problem in the
Continuous Case

Even though the general continuous segmentation prob-
lem is NP-hard, we identify some properties of the start-
stop diagram that make the problem tractable.

In the following, we assume that there exists a grid
decompositon of size n× n or smaller of the start-stop
diagram. When f is a piecewise-constant function there
is a natural decomposition of the start-stop diagram
into a grid by the breakpoints of f (see Figure 3(c)). In
this case each cell of the grid corresponds to a set of
candidate segments where the start and stop points lie
on fixed pieces of f . The cells incident to the diagonal
are triangular and represent candidate segments with
start and stop points lying in the same piece.

Computing the reachable space. Recall that a
minimal segmentation corresponds to a minimum-link
staircase in the start-stop diagram. We define the k-
reachable space Rk as the set of points on the diagonal
that can be reached from (0, 0) by a valid staircase of size
at most k. We identify the (connected components of
the) reachable space Rk with a set of intervals on I. The
number of intervals is the complexity of the reachable
space. For a fixed k, the incoming k-reachable intervals
of a cell Cij are the intervals of Rk intersected with
the ith column. We call the union of vertical (resp.
horizontal) lines intersecting the interval X the vertical
slab (resp. horizontal slab) induced by an interval X.
Consider the valid staircases of size at most (k+1) which
have their last convex vertex in such a vertical slab VX .
We call the connected components of the set of points

on the diagonal that can be reached by such a staircase
the outgoing (k + 1)-reachable intervals produced by X.

The following algorithm describes an iterative procedure
to compute Ri, for i = 1, 2, . . . , starting with R0 =
{(0, 0)}. The algorithm stops when it has found the
smallest value of i for which Ri contains point (1, 1). Let
this be k. An actual minimum-link staircase, and hence
a minimal segmentation, can then be extracted from the
sets R0, .., Rk.

Algorithm ReachableSpace(S)
Input. A start stop-diagram S
Output. The sets of reachable space R0, .., Rk,
where k is the smallest i such that Ri contains an
interval with point (1, 1).
1. i← 0;R0 ← {(0, 0)}
2. while (1, 1) 6∈ Ri do
3. for each interval X in Ri do
4. Consider the intersection of the free

space in S with the vertical slab induced
by X and project it horizontally back
to the diagonal.

5. The union of Ri and these projections, over
all X, forms Ri+1.

6. i← i+ 1
7. return R0, .., Ri

We will make this algorithm more concrete when proving
Theorem 3.2 and we will see that the running time
depends on the shape and the distribution of the
forbidden space in each cell. Note, for example, that
a monotone criterion yields a monotone curve in the
start-stop diagram. The region above the curve is the
forbidden space, and the region below the curve is the
free space. We call an object verticonvex if and only
if its intersection with any vertical line ` is at most a
single interval.2 A start-stop diagram cell (or row) is

2A verticonvex region is also called “x-monotone” in the

verticonvex when the forbidden region within it is (see
Figure 4(a)). We call a cell a tunnel cell if any vertical
line ` intersects the forbidden space in that cell in at
most two intervals (see Figure 4(b) for an example). We
will show that for a given n× n start-stop diagram we
can compute a minimal segmentation in k segments in
O(kn2) time if all cells are verticonvex, and in O(k2n2)
time if each row contains at most one tunnel cell and all
other cells are verticonvex. If one allows cells where a
vertical line can intersect the forbidden space in three
or more intervals (i.e., double-tunnels), the problem
becomes NP-hard as seen in the construction in the
proof of Theorem 2.2. We will later see that even if we
have only tunnel cells, but more than one tunnel cell in
each row, we may create a reachable space of exponential
complexity.

3.1 Verticonvex cells only

Consider the algorithm ReachableSpace. The intersec-
tion of a vertical line with the free space in a verticonvex
cell consists of at most two (possibly empty) intervals:
one connected to the top, and one connected bottom of
the row. The horizontal projection onto the diagonal
preserves this property, and the union of the projections
of this type also consists of at most two intervals (see
Figure 4(c)).

Observation 3.1. For any k and any row, the reach-
able space Rk produced by the incoming intervals in the
verticonvex cells in the row consists of at most two in-
tervals. One of these intervals is connected to the top of
the row, and the other one is connected to the bottom of
the row.

We now prove:

Theorem 3.2. Given an n × n start-stop diagram in
which the forbidden space in each cell is verticonvex
and has constant complexity, we can compute a minimal
segmentation in O(kn2) time, where k is the size of a
minimal segmentation.

Proof. Assume that for the given instance of the problem
a valid segmentation exists. We specialize the procedure
used in algorithm ReachableSpace. Recall that the
reachable space can be encoded as a set of intervals, each
of which corresponds to a connected component on the
diagonal. Since all cells are verticonvex, Observation 3.1
implies that the k-reachable space consists of O(n) such

literature; we choose to use the new term to avoid confusion
with “monotone criteria.”

intervals and as such we can store it as a set of O(n)
values. Given the reachable space Ri we compute the
reachable space Ri+1 in a row by row manner. By
Observation 3.1 the (i + 1)-reachable space restricted
to any row consists of two intervals, one connected to
the top and one to the bottom. In order to compute
these two intervals we maintain the highest reachable
point and lowest reachable point while iterating over the
cells in the current row and handling the incoming i-
reachable intervals to every cell. Observation 3.1 implies
that there are at most two incoming i-reachable intervals
to any cell, since it is nothing more than the i-reachable
space restricted to the column that contains the cell.
Furthermore, the complexity of the forbidden space in
each cell has constant complexity. Therefore, we spend
constant time per cell during this process and O(n2)
time in total for computing Ri+1 from Ri. We perform
this step until the top-right corner (1, 1) is contained
in Ri+1. Since this happens for i + 1 = k, this takes
O(kn2) time. An optimal segmentation can be extracted
by standard dynamic programming methods. 2

3.2 At most one tunnel per row

Our algorithm ReachableSpace is efficient when all
rows in the start-stop diagram are verticonvex. If a
row is not verticonvex, it may produce more than two
intervals. Nonetheless, we show that if the start-stop
diagram is not too complex—specifically, if each row
contains at most one tunnel cell—the problem can still
be solved efficiently. We need the following lemma to
prove Lemma 3.2.

Lemma 3.1. Let C be a tunnel cell, and let F ⊆ C
be the forbidden space. An incoming interval X can
produce at most one outgoing interval I such that (i) I is
neither incident to the top nor the bottom of the row;
and (ii) I does not intersect a horizontal line through a
vertex of F .

Proof. Assume, for a contradiction, that X can produce
two intervals with this property. Let them be denoted
I = [i1, i2] and J = [j1, j2], where i2 < j1 (see Figure 5).
Let HI denote the horizontal slab induced by I, define
HJ similarly, and let VX denote the vertical slab induced
by X. Since I does not intersect a horizontal line through
a vertex of F , HI does not contain any vertices. The
same holds for HJ .

Now, consider the interval I. Since X produced outgoing
interval I, there must be at least one point p of free space
in VX ∩ HI . Since there are no vertices in HI , either
p lies on a curve γ of free space, or in a face of free

`

i1

i2

j1

j2

I

J

X

p

Figure 5: Illustration to the proof of Lemma 3.1. The
vertices of the forbidden space are also shown.

space that is bounded by curves. Since the curves are a-
monotone, they extend to the left and right outside VX ;
in the second case this means the face that contains p
restricted to VX is bounded by two curves γ1 and γ2. It
must be that γ, γ1, γ2 ∩VX ⊆ HI ; otherwise, I would be
larger.

We can make the same argument about the interval J
and obtain one or two boundary curves as described
above that stay inside HJ when intersected with VX .
Clearly, they must also intersect a vertical line ` ⊆ Vx
inside HJ . This implies that ` intersects F at least three
times: once below i1, once between i2 and j1 and once
above j2. Therefore, C is not a tunnel cell. 2

Lemma 3.2. Let C be a tunnel cell, and let F ⊆ C
be the forbidden space. Suppose C has m incoming k-
reachable intervals and u is the complexity of the union
of the outgoing (k + 1)-reachable intervals produced by
them. Then u ≤ c + m + 2, where c is the number of
vertices of F .

Proof. We draw a horizontal line hv through every vertex
v of F . Let H denote this set of lines. We charge
every interval in the union of the outgoing intervals that
intersects such a line hv to v. This way, each vertex gets
charged at most once, since two intervals that would
charge the same line cannot be disjoint. Thus, we have
at most c charges of this type.

By Lemma 3.1, each incoming interval can produce at
most one outgoing interval that does not intersect a
line of H and is neither incident to the top nor to the
bottom of the row. Therefore, we can charge those to
the incoming intervals with at most m charges.

The remaining intervals in the union are either incident
to the top or the bottom of the row, and of those there
can be at most two in total. This completes the proof. 2

Lemma 3.3. In an n × n start-stop diagram in which
(i) the forbidden space in each cell has constant complex-
ity, (ii) each row contains at most one tunnel cell, and
(iii) the remaining cells are verticonvex, Rk consists of
at most O(kn) intervals.

Proof. Consider the k-reachable space Rk restricted to
one row of the grid. It consists of the endpoints of all
valid staircases that have their last convex vertex in a
cell of this row.

We distinguish two types of staircases: (a) those that
have their last convex vertex in a verticonvex cell and
(b) those that have it in a tunnel cell. By Observation 3.1,
the k-reachable space that is formed by the staircases of
type (a) has constant complexity.

As for the staircases of type (b), they all have their
last convex vertex in the same cell since there is only
one tunnel cell per row. By Lemma 3.2, and since the
forbidden space in every cell has constant complexity,
the k-reachable space formed by those staircases consists
of m+O(1) intervals, where m is the complexity of the
(k − 1)-reachable space Rk−1 restricted to the column
that the tunnel cell lies in.

Thus, we have the following recurrence for the complexity
of the k-reachable space restricted to one row: C(k) ≤
C(k − 1) + O(1). Clearly, C(1) ≤ 3, and therefore, we
have that C(k) = O(k). Since there are n rows, the
lemma follows. 2

Since the complexity of the forbidden space is constant
in each cell, we can list a set of m incoming intervals
and produce the at most m + O(1) outgoing intervals
in O(m) time. Using essentially the same algorithm as
before we then obtain:

Theorem 3.3. Given an n × n start-stop diagram in
which (i) the forbidden space in each cell has constant
complexity, (ii) each row contains at most one tunnel
cell, and (iii) the remaining cells are all verticonvex, we
can compute a minimal segmentation in O(k2n2) time,
where k is the size of a minimal segmentation.

4 Combining Criteria

We can also consider segmenting a trajectory based on
multiple criteria. For example, we want segments such

Figure 6: A refined grid.

that two criteria hold simultaneously, or where at least
one criterion holds. We can combine criteria into new
ones by taking conjunctions, disjunctions, and negations,
and in general we can build any Boolean combination
this way.

Again, we assume that there exists a grid decompositon
of size n × n or smaller of the start-stop diagram for
each of the criteria. To obtain the start-stop diagram
for the criterion C1 ∧ C2 we simply overlay their grids
and take the union of the forbidden space F1 of C1 and
the forbidden space F2 of C2. Similarly, the forbidden
space for C1 ∨ C2 is the intersection of F1 and F2. Can
we still solve the segmentation problem efficiently on the
resulting start-stop diagram?

Buchin et al. [4] observe that the conjunction or disjunc-
tion of monotone criteria is again monotone. Similarly,
observe that the start-stop diagram of a disjunction
of two verticonvex criteria, i.e., criteria for which the
start-stop diagram contains only verticonvex cells, again
contains only verticonvex cells. Hence the disjunction
of two verticonvex criteria is again a verticonvex crite-
rion. Since a monotone criterion is also verticonvex, the
disjunction of a monotone criterion with a verticonvex
criterion results in a verticonvex criterion as well.

For the conjunction of two verticonvex criteria we take
the union of their forbidden spaces. Unfortunately, this
can lead to non-verticonvex cells. However, we can show
that if one of the criteria is monotone, we can slightly
modify the grid of the combined start-stop diagram such
that it contains at most one tunnel cell in each row and
the remaining cells are verticonvex. By Theorem 3.3
we can therefore still compute a minimal segmentation
efficiently.

Theorem 4.1. Let C1 be a monotone criterion, let C2

be a verticonvex criterion, and let the overlay of their
grids have size n× n. If the complexity of the forbidden

space in every cell is constant, then we can compute
a minimal segmentation with respect to the criterion
C1∧C2 in O(k2n2) time, where k is the size of a minimal
segmentation.

Proof. We argue that there exists an O(n)×O(n) grid
decomposition of the start-stop diagram of C1 ∧C2 such
that (i) every row contains at most one tunnel cell, and
(ii) the remaining cells are verticonvex. The claim then
follows from Theorem 3.3.

Recall that a monotone criterion corresponds to an ab-
monotone curve γ in the start-stop diagram (with axes a
and b), in which all points above the curve are forbidden
space, and all points below the curve are free space. We
subdivide the grid such that γ intersects at most one
cell in any row, and at most one cell in any column
(see Figure 6). Since γ is ab-monotone it intersects an
original grid line at most once; this means we add at
most O(n) grid lines. The complexity of the forbidden
space in each cell is constant.

Clearly, the cells of the refined grid that are not
intersected by γ are verticonvex: everything above γ
is forbidden space, and the forbidden space in other
cells originates only from a verticonvex criterion. The
cells that are intersected by γ are tunnel cells since
every vertical line intersects the forbidden space at most
twice: at most once for the forbidden space resulting
from the verticonvex criterion, and at most once for the
forbidden space above γ. The claim now follows from
Theorem 3.3. 2

Note that essentially the same approach can also be used
to solve the problem for the conjunction of a verticonvex
criterion and the negation of a monotone criterion:

Corollary 4.1. Let C1 be a monotone criterion, let
C2 be a verticonvex criterion, and let the overlay of their
grids have size n× n. If the complexity of the forbidden
space in every cell is constant, then we can compute
a minimal segmentation with respect to the criterion
¬C1 ∧ C2 in O(k2n2) time, where k is the size of a
minimal segmentation.

5 Lower Bounds

The running time in Theorem 4.1 (and Theorem 3.3)
is a factor k worse than that in Theorem 3.2. We now
give an example of an n×n start-stop diagram resulting
from the conjunction of a monotone and a verticonvex
criterion in which the complexity of the k-reachable
space is Ω(kn). In this start-stop diagram, every cell

Figure 7: A start-stop diagram that results in a k-reachable space of complexity Ω(kn). Note that the forbidden
space is shown in light colors and the free space is shown in dark colors in this figure. In particular, in white
the forbidden space resulting from the monotone criterion, in lightyellow the forbidden space resulting from the
verticonvex criterion, and in red the free space.

has constant complexity, every row contains at most one
tunnel cell and all the remaining cells are verticonvex.
This shows that the extra factor k in the above theorems
is necessary in the worst case. Though this construction
shows we cannot hope to solve the abstract problem
any faster, we do not expect this behavior to appear in
practice.

Theorem 5.1. There exists an n×n start-stop diagram
such that (i) the forbidden space is the union of the region
above a monotone curve and one verticonvex region per
cell (ii) the forbidden space in each cell is polygonal and
has constant complexity, and (iii) the complexity of the
reachable space Ri after i steps is Ω(in) for all i < n/2.

Proof. For a given k, we construct a start-stop diagram
of size n = 2k+ 1 where the complexity of the reachable
space in a single cell can be quadratic, and moreover, the
total complexity is Ω(k2). The construction is illustrated
in Figure 7.

The construction consists of two parts. The first part
consists of the first k + 1 columns, where we define the
free space as follows. For 1 ≤ i ≤ j ≤ k, the cells Cij are
completely free if i + 1 = j, and completely forbidden
otherwise. In each cell Ci(k+1), the bottom i/k fraction
is free, and the rest is forbidden. Cell C(k+1)(k+1) is
completely forbidden, as are all cells where i ≤ k and
j ≥ k+2. The cells in the k+1th row are used to create a

situation in the kth interval where the i-reachable space
is different for each i = 1, . . . , k, and the i-reachable
space is contained in the j-reachable space for any i < j.

The second part consists of the last k + 1 columns
(overlapping one column with the first part), and is
used to duplicate this set of intervals k times. Only
cells C(k+1+i)(k+2+i) contain free space, for 0 ≤ i ≤ k.
Any other cells are completely forbidden. Consider a
cell C(k+1+i)(k+2+i) and map it to the unit square. We
create a triangle of free space in the lower right, with
coordinates (i

i+1 , 0), (1, 0), and (1, i+1
i+2). Furthermore,

we create a tunnel of free space cutting diagonally
through the remaining forbidden space at the top. This
tunnel has its vertices at (0, i+1

i+2), (1, 1), (i+2
(i+1)2 ,

i+1
i+2)

and (1, 1 − 1
i+1). The triangular piece of free space is

used to take the last groups of k intervals from the k+ith
column and project it to the first part of the next column,
while the line-shaped part of the free space copies all i
groups of k intervals once, leading to k2 intervals in the
final cell. 2

Next, we show that if we can have even more tunnel
cells, then the reachable space can have an exponential
complexity.

Theorem 5.2. There exists an n×n start-stop diagram
such that (i) the forbidden space in each cell has constant
complexity, (ii) each row contains at most two tunnel

Figure 8: A start-stop diagram with at most two tunnels
per row that results in a 2k-reachable space of complexity
Ω(2k). Note that the forbidden space is shown in white
in this figure.

cells, (iii) the remaining cells are all verticonvex, and
(iv) the complexity of the reachable space Ri after i steps
is Ω(2i), for all i < n/2.

Proof. For a given k, we construct a start-stop diagram
of size n = 2k + 1 where the complexity of the
reachable space in a single cell can be exponential. The
construction is illustrated in Figure 8. The construction
consists of k copies of a gadget that uses three tunnel
cells, which effectively doubles the complexity of the
reachable space in a single pass. 2

6 Computing the Start-stop Diagram

In previous sections we focused on computing minimal
segmentations for a given start-stop diagram or start-
stop matrix. We now discuss two specific criteria,
prove that they are verticonvex, and explain how to
construct the corresponding start-stop diagram or start-
stop matrix efficiently. For both the discrete- and
the continuous segmentation problem this leads to
polynomial-time algorithms. The criteria are defined
on a piecewise-constant function f . We also show that
if f is piecewise-linear then the start-stop diagram may
contain more than one tunnel cell per row.

6.1 The outlier-tolerant criterion

For a given piecewise-constant function f , we can
segment f such that in each segment [a, b] the minimum
and maximum values differ by at most h. To accomodate

x

ψij

χ<
ij

h

χ≤
ij

Figure 9: Obtaining the function ψij from χ≤ij and χ<ij
shifted by h to the left (dashed).

outliers we require that only a fraction ρ, for a given
constant 0 ≤ ρ ≤ 1, of a segment [a, b] must have
its values within a range of extent h, and a fraction
1− ρ of [a, b] may have any value.3 We present efficient
algorithms for computing the start-stop matrix and
the start-stop diagram for this criterion. To obtain
a segmentation algorithm for the continuous case, we
further show that the forbidden space within each cell
of the start-stop diagram is verticonvex.

6.1.1 Discrete case

We consider f as a sequence s1 = (v1, w1), . . . , sn =
(vn, wn) of (value, weight) pairs. We first give a formal
definition of the criterion and investigate its structure.
Let Sij be the contiguous subsequence si, . . . , sj and let

λij be the total weight of its elements. Let S≤ij(x) =
{sk ∈ Sij | vk ≤ x} denote the set of elements in Sij
with value at most x, and let χ≤ij(x) =

∑
sk∈S≤

ij(x)
wk be

the total weight of these elements. We define S<ij (x) and

χ<ij(x) analogously. The total weight of the elements in
Sij with a value in the range [x, x+ h] is then

(6.1) ψij(x) = χ≤ij(x+ h)− χ<ij(x).

Our goal is now to segment f so that, for each segment
Sij , we have maxx ψij(x)/λij ≥ ρ. Let B be the
start-stop matrix. To test the value Bij , we could

compute an explicit representation of χ≤ij and an explicit

representation of χ<ij shifted by h to the left, and
then take their difference (see Figure 9). This takes
O((j− i) log(j− i)) time. Since there are O(n2) cells the
total amount of time required to compute the start-stop
matrix is O(n3 log n).

3Using the same algorithm we can also handle the following

similar criterion by using the logarithm of the function. For a
given piecewise-constant function f , we can segment f so that in
each segment [a, b] there is a portion V of total length at least

ρ(b− a) such that wmax/wmin ≤ h, where wmin and wmax are the
minimum and maximum function values that occur in V .

It is however not necessary to recompute the functions
from scratch for each cell. Increasing j by one corre-
sponds to raising the functions χ≤ij and χ<ij by wj+1 for
all values x ≥ vj+1. Therefore we have:

(6.2)

ψi(j+1)(x) =

{
ψij(x) + wj+1 if x ∈ [vj+1 − h, vj+1]

ψij(x) otherwise

We now store ψij as a data structure that allows us to
query the maximum of ψij on any given interval, and
can be updated efficiently to represent ψi(j+1). The
data structure we use is an augmented segment tree that
supports both operations in O(log n) time.4

Data structure to compute the start-stop matrix.
We associate each piece sj = (vj , wj) of f with an
interval Ij = [vj −h, vj] of weight wj . By Equation (6.2)
it now follows that the value of ψij(x) is equal to the
total weight of the intervals from I1, .., Ij that contain x.
Hence, we can represent ψij using the set of intervals
I1, .., Ij . We now describe an augmented segment tree T
that stores these weighted intervals.

Let u1, .., um be the endpoints of all intervals in I1, .., In
in sorted order. Internally, a segment tree T stores
the elementary intervals [ui, ui+1] in this order in the
leaves of a balanced binary tree [8]. The internal nodes
store values that allow searching on u-value. Since we
know the endpoints of the intervals of ψij for all i and j
in advance, we can initialize T with the set of O(n)
endpoints and all weights set to zero. Therefore, no
rebalancing has to be done when adding or removing an
interval stored in the tree; only the values stored in the
nodes which relate to weights will change.

Each node ν in a segment tree has an associated range rν ,
and an associated set Iν of intervals. The range rν is the
union of the elementary intervals stored in (the leaves of)
the subtree rooted at ν, and Iν is a subset of intervals
stored in the tree. An interval I occurs in Iν if and only
if I contains rν but not the range of ν’s parent node [8].
We now augment T such that each node ν stores the
total weight Aν of the intervals associated with ν.

So for a tree T representing the function ψij we can
obtain the value of ψij at x by searching for the
elementary interval containing x and sum over the A-
values on the search path.

4The segments that are stored in this standard data structure

as described in [8] are not to be confused with the segments of the
segmentation of a trajectory.

A second augmentation provides us with a way to
determine the maximum of ψij in a given interval in
O(log n) time. This is done by storing a value Bν at
every node ν that is the maximum sum of all A-values
on a path from ν to a leaf in the subtree rooted at ν.

When querying T for the maximum of the function ψij
on a given interval [a, b], we walk along the two paths
from the root to the elementary intervals containing
a and b and maintain the maximum of the B-values
stored in the roots of the subtrees in between the two
paths. This takes time linear in the number of nodes
visited, hence we can find the maximum of ψij on [a, b]
in O(log n) time.

When inserting an interval Ij = [vj − h, vj] with
weight wj , updating A- and B-values can be done in
O(log n) time. The A-value needs to be increased by wj
in the O(log n) nodes ν for which Ij ∈ Iν . This operation
is standard. The B-values have to be updated only in the
nodes along the path from the root to the nodes where
the A-values have been modified. Since those nodes lie
along the two paths from the root to the elementary
intervals storing vj − h and vj , this can be done in
O(log n) time overall.

Lemma 6.1. The start-stop matrix can be computed in
O(n2 log n) time.

Proof. We fill in the matrix B by testing the validity of
subsequences of S. A single column of B corresponds
to testing the validity of Sii, Si(i+1), . . . , Sin. This can
be done in the given order (bottom-up in a column) in
O(n log n) time by using the data structure described
above.

Assume that we have a tree T representing ψij and
that we have determined whether Sij is valid. Then we
insert Ij+1 with weight wj+1 in the augmented tree, and
perform a query to determine maxx ψi(j+1)(x). We also
compute λi(j+1) from λij by adding wj+1. Now the test
maxx ψi(j+1)(x)/λi(j+1) ≥ ρ determines whether Si(j+1)

is valid or not. 2

We then use the algorithm from Theorem 2.1, and
conclude:

Theorem 6.1. Given a piecewise-constant function f
with n breakpoints, a threshold value h > 0, and a
ratio ρ ∈ [0, 1], we can compute a minimal discrete
segmentation for the condition that, on a fraction of
length at least ρ of a segment, the difference between the
maximum and minimum function value is at most h, in
O(n2 log n) time.

6.1.2 Continuous case

For continuous segmentation, we are allowed to cut f
at any two points a, b ∈ [0, 1]. So we need to determine
the forbidden space in the start-stop diagram. The
breakpoints of the function f decompose the start-stop
diagram in a grid. We now prove that the forbidden
space within a cell C = [a, a] × [b, b] of this grid can
be described by four linear inequalities of the following
form, where ψ∗1 , . . . , ψ

∗
4 are constant values specific to

the cell.

(6.3) (b− a)ρ >


ψ∗1 + (a− a) + (b− b)
ψ∗2 + (a− a)

ψ∗3 + (b− b)
ψ∗4

Lemma 6.2. For any cell C = [a, a]× [b, b] of the start-
stop diagram, there exist values of ψ∗1 , . . . , ψ

∗
4 , such that

the forbidden space in C is the intersection of four
halfplanes with the cell, described by the inequalities
in (6.3).

Proof. We use an approach similar to that used in the
previous section. Let

χ≤(x, a, b) =
∣∣{t | t ∈ [a, b] ∧ f(t) ≤ x}

∣∣
denote the length of the portion of [a, b] on which the
value of f is at most x, let χ< be defined analogously,
and let

(6.4) ψ(x, a, b) = χ≤(x+ h, a, b)− χ<(x, a, b).

For any point (a, b) ∈ [a, a] × [b, b], the corresponding
segment [a, b] is invalid if and only if maxx ψ(x, a, b) <
(b− a)ρ, i.e. for all possible intervals I = [x, x+ h], the
fraction of [a, b] on which the function value lies in I is
smaller than ρ.

Note that the candidate segment corresponding to (a, b)
contains the segment defined by (a, b) and let ψC be the
function ψ restricted to the cell C. We can rewrite ψC
with respect to ψ(x, a, b) as follows. Within the cell,
decreasing a by some value ∆a corresponds to raising
the functions χ≤ and χ< by ∆a for all input values which
are greater or equal to f(a). By the definition of ψ in
Equation (6.4) above, this implies that ψC increases by
∆a only on the interval Ia = [f(a)− h, f(a)]. Similarly,
increasing b by ∆b results in increasing ψC by ∆b on
Ib = [f(b)−h, f(b)]. Letting ∆a = a− a and ∆b = b− b,
we can rewrite ψC as follows:

(6.5)

ψC(x, a, b) =


ψ(x, a, b) + ∆a + ∆b if x ∈ Ia ∩ Ib
ψ(x, a, b) + ∆a if x ∈ Ia \ Ib
ψ(x, a, b) + ∆b if x ∈ Ib \ Ia
ψ(x, a, b) otherwise

For each of the above cases, the maximum of the function
over x depends on ψ(x, a, b). For each maxima, ψ(x, a, b)
is a value no longer depending on x, a, or b. Let these
values (constants) be ψ∗1 , . . . , ψ

∗
4 . It follows that each

of the above cases yields a linear inequality in a and b.
The values of (a, b) for which each of these inequalities
holds true form the forbidden space. Thus, the forbidden
space in this cell can be described by the intersection of
the corresponding four halfplanes. 2

Lemma 6.3. The start-stop diagram can be computed in
O(n2 log n) time.

Proof. As in the discrete case, we can represent the
function ψij = ψ(·, a, b) in a data structure, where (a, b)
is the lower right corner of the current cell. Again, we
maintain this data structure while traversing the cells
of the grid bottom up within a column and reinitialize
it for every column. We use exactly the same data
structure as before. By Lemma 6.2, the forbidden space
in a cell is described by Equation (6.3). We now need
four queries to compute the values of ψ∗1 , . . . , ψ

∗
4 , since

these are the maxima of the function ψij on the intervals
in Equation (6.5). And hence, we get the free space of
a cell C. This means we can compute the start-stop
diagram in O(n2 log n) time. 2

Clearly, Lemma 6.2 implies the forbidden space within
each cell of the start-stop diagram is verticonvex and
has constant complexity, so we can invoke Theorem 3.2.
We conclude:

Theorem 6.2. Given a piecewise-constant function f
with n breakpoints, a threshold value h > 0, and a ratio
ρ ∈ [0, 1], we can compute a minimal segmentation
for the condition that on a fraction of at least ρ of
a segment, the difference between the maximum and
minimum function value is at most h in O(n2 log n+kn2)
time, where k is the size of a minimal segmentation.

Piecewise-linear functions. If the attribute func-
tion f is piecewise linear, then the grid induced by the
breakpoints of f may contain (many) tunnel cells. As-
sume that we want to segment the attribute function f

−2

−1

0

1

2

a

f

b2 b3b1 b4

Figure 10: A piecewise-linear attribute function that
leads to tunnel cells.

depicted in Figure 10 on the outlier-tolerant criterion
with h = 2 + ε, for some 0 ≤ ε ≤ 0.1 and ρ = 2/3, i.e.
the difference between any two values is not more than
approximately 2 but we can disregard 1/3 of the seg-
ment. For this criterion, the candidate segments [a, b2]
and [a, b3] are valid, as well as any candidate segment
[a, b] for b1 < b < b2. However, there exist candidate
segments [a, b] for b2 < b < b3 and for b3 < b < b4 which
are not valid. Since b1, b2, b3, and b4 lie on the same
piece of the function f , this implies that the vertical
line at a intersects the forbidden space in this cell twice,
once below b3 and once above b3.

It is now easy to see that we can create more than one
tunnel cell per row: we simply use the above construction
with points a− = a − δ and a+ = a + δ, for some
arbitrarily small δ, as starting point of the segments.
Since a is a break point these points lie on different
pieces of f , and hence we get two tunnel cells. In both
cases the end points of these segments lie on the piece
[b1, b4], so the cells lie in the same row.

This example suggests that solving the problem for
piecewise-linear attribute functions efficiently calls for a
different approach.

6.2 The standard deviation criterion

Another important non-monotone criterion that we
consider involves the standard deviation of an attribute
function. In this section we show how to compute a
minimal segmentation of a piecewise-constant function f
where each segment has standard deviation not exceeding

a given threshold value. Let µ(a, b) =
∫ b
a
f(y) dy/(b− a)

denote the mean value on a candidate segment [a, b].
The standard deviation σ(a, b) is given by

σ(a, b) =

√∫ b
a

(f(x)− µ(a, b))2 dx

b− a
.

6.2.1 Discrete case

In the discrete segmentation problem, we are allowed to
partition f only where its value changes. Recall that f is
given as a sequence S = s1, . . . , sn of pairs si = (vi, wi),
where vi is the value of piece i and wi is its weight.

Lemma 6.4. The start-stop matrix can be computed in
O(n2) time.

Proof. To compute the start-stop matrix B, we need
to test whether the standard deviation of a segment is
below the allowed threshold. We could compute this
in time linear in the length of a segment. However, we
can also maintain the mean µij and standard deviation
σij of a weighted sequence Sij . We can then compute
the mean µi(j+1) and the standard deviation σi(j+1) for
Si(j+1) in constant time using µij and σij . This implies
that we can fill B in constant time per cell and thus
quadratic time in total. 2

Once we have B we can compute a minimal segmentation
in O(n2) time (Theorem 2.1). Hence:

Theorem 6.3. For any value h > 0, a minimal discrete
segmentation where each segment has standard deviation
at most h can be computed in O(n2) time.

6.2.2 Continuous case

In the continuous case, a and b can have any real value
in I. Setting the standard deviation σ(a, b) equal to
the constant threshold value h, we obtain the functional
description of the boundaries of the forbidden space in
the start-stop diagram:

σ(a, b) = h ⇐⇒
∫ b

a

(f(x)− µ(a, b))2 dx = (b− a) · h2.

Further algebraic manipulations, using the fact that f
is piecewise constant, give a cubic expression in a and b.
Hence, the boundaries of the forbidden space within each
cell of the start-stop diagram are piecewise-cubic curves.
This allows us to prove the following lemma:

Lemma 6.5. Every cell of the start-stop diagram is
verticonvex.

Proof. On a vertical line, the start point of the candidate
segment is fixed. Let it be ã. Inside a single cell, the
stop point has a single constant function value f(b) = c.
Therefore, varying b implies including more or less of c
in the values whose standard deviation is considered.

Imagine b is at its low end of the cell, and let it increase to
its high end. Then the mean µ(ã, b) tends monotonically
towards c. There are four cases to distinguish:

1. Initially σ(ã, b) < h and |µ(ã, b)− c| < h. Then the
whole intersection of the cell and the vertical line is
allowed.

2. Initially σ(ã, b) > h and |µ(ã, b) − c| > h. Then
the lower end of the intersection is forbidden, but
possibly, at some value of b it becomes allowed.

3. Initially σ(ã, b) < h and |µ(ã, b) − c| > h. Then
the lower end of the intersection is allowed, but
possibly, it becomes forbidden and possibly later
allowed again.

4. Initially σ(ã, b) > h and |µ(ã, b) − c| < h. Then
the lower end of the intersection is forbidden, but
possibly, at some value of b it becomes allowed.

In other words, we have the property that if for some b
the candidate segment becomes allowed, then it stays
allowed. This is true for the following reason. At
the value b̃ of b when [ã, b] becomes allowed, we have
σ(ã, b̃) = h and |µ(ã, b̃) − c| < h. For increasing b the
average µ(ã, b) will tend monotonically towards c. So
for larger b we have |µ(ã, b) − c| < h, and therefore
σ(ã, b) < h. This proves the lemma. 2

Lemma 6.6. The start-stop diagram can be computed in
O(n2) time.

Proof. The forbidden space in each cell has constant
complexity, and given the description of σ for cell C we
can compute σ for neighbors of C in O(1) time. 2

Using Theorem 3.2, we then obtain:

Theorem 6.4. Given a piecewise-constant function f
with n breakpoints and a threshold value h > 0, we
can compute a minimal segmentation for the criterion
that the standard deviation of a segment is at most
h in O(kn2) time, where k is the size of a minimal
segmentation.

Piecewise-linear functions. As with the outlier-
tolerant criterion, if f is piecewise linear then the
grid decomposition of the start-stop diagram induced
by the breakpoints of f may contain (many) tunnel
cells. Consider for example the function f depicted
in Figure 11. For both the candidate segments [a, b2]

0 a

f

b2 b3b1 b4

1

b5

Figure 11: A piecewise-linear attribute function that
leads to tunnel cells.

and [a, b4] the mean is close to 0.5 and the standard
deviation is close to 0.25. However, there exists a value
b2 < b < b4, such that the mean and the standard
deviation of [a, b] are smaller than 0.25. For example
in Figure 11 the standard deviation at b3 is below 0.2.
So if we choose h = 0.25 the cell [0, b1] × [b1, b5] is a
tunnel cell: the vertical line at a intersects the forbidden
space twice, once below b3 and once above it. We can
extend this example to construct two tunnel cells as
before. Therefore, we do not expect that there exists a
straightforward extension of our algorithm to this case.

7 Conclusions

In this paper we analyzed the problem of segmenting
a trajectory for non-monotone criteria. For monotone
criteria near-linear time algorithms are known [4]. We
showed that also for certain non-monotone criteria
polynomial-time solutions exist. In particular, our
approach uses the start-stop diagram and we identify
properties of this diagram that make the problem
tractable. Furthermore, we proved that the abstract
segmentation problem based on this diagram is NP-hard.

For two concrete non-monotone criteria we presented
efficient algorithms to compute the start-stop diagram.
We also showed that the resulting diagrams indeed have
the properties that allow for efficient segmentation. As
a result, we can compute an optimal segmentation of
a trajectory based on the outlier-tolerant criterion in
O(n2 log n+ kn2) time, and on the standard deviation
criterion in O(kn2) time, where n is the number of
vertices of the input trajectory and k is the number of
segments in an optimal solution. These two criteria are
relevant in practice, since they are more robust against
noise than related monotone criteria.

A complete characterization of the start-stop diagrams
that allow for efficient segmentation is still open. We
started with this characterization, but more can perhaps
be said. Furthermore, the analyses of the running

times for the outlier-tolerant criterion and the standard
deviation criterion are based on the assumption that the
attribute function is piecewise constant. While many
second-order attributes, such as speed and heading, are
piecewise constant due to the linear interpolation of the
trajectory, it would also be interesting to see whether
similar results can be obtained for, e.g., piecewise-linear
functions. The examples given in Sections 6.1 and 6.2
seem to indicate that the methods developed in this
paper do not immediately apply if the attribute functions
are piecewise linear.

Finally, our two-step approach of first computing the
start-stop diagram, and then solving the segmentation
problem, inherently requires at least O(n2) time and
space. An intriguing open problem is whether a
subquadratic solution may be possible.

Acknowledgments

Work on this paper has been partially supported by the
Netherlands Organisation for Scientific Research (NWO)
under project no. 639.021.123, 612.001.022, and 612.065.823,
and by EU Cost Action IC0903 (MOVE). Work on this paper
by B.A. has been partially supported by NSA MSP Grant
H98230-10-1-0210 and by NSF Grants CCF 08-30691 and
CCF 11-17336.

References

[1] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. Int. J. Comput. Geometry
Appl., 5:75–91, 1995.

[2] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou,
E. Keogh, and P. Yu. Global distance-based segmenta-
tion of trajectories. In Proc. 12th Conference on Knowl-
edge Discovery and Data Mining, pages 34–43, 2006.

[3] P. Bovet and S. Benhamou. Spatial analysis of animals’
movements using a correlated random walk model. J.
Theoretical Biology, 131(4):419–433, 1988.

[4] M. Buchin, A. Driemel, M. J. van Kreveld, and
V. Sacristan. Segmenting trajectories: A framework
and algorithms using spatiotemporal criteria. J. Spatial
Information Science, 3(1):33–63, 2011.

[5] C. Calenge, S. Dray, and M. Royer-Carenzi. The concept
of animals’ trajectories from a data analysis perspective.
Ecological Informatics, 4(1):34 – 41, 2009.

[6] P. Chundi and D. J. Rosenkrantz. Segmentation of time
series data. In J. Wang, editor, Encyclopedia of Data
Warehousing and Mining, pages 1753–1758. 2009.

[7] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algo-
rithms. McGraw-Hill, 2008.

[8] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[9] S. Dodge, R. Weibel, and E. Forootan. Revealing
the physics of movement: Comparing the similarity
of movement characteristics of different types of moving
objects. Computers, Environment and Urban Systems,
33(6):419–434, 2009.

[10] K. Fu and J. Mui. A survey on image segmentation.
Pattern Recognition, 13(1):3–16, 1981.

[11] E. Gurarie, R. D. Andrews, and K. L. Laidre. A novel
method for identifying behavioural changes in animal
movement data. Ecology Letters, 12(5):395–408, 2009.

[12] X. Li, X. Li, D. Tang, and X. Xu. Deriving features
of traffic flow around an intersection from trajectories
of vehicles. In Proc. 18th International Conference on
Geoinformatics, pages 1–5. IEEE, 2010.

[13] R. Mann, A. Jepson, and T. El-Maraghi. Trajectory
segmentation using dynamic programming. In Proc.
16th International Conference on Pattern Recognition
(ICPR), volume 1, pages 331–334, 2002.

[14] R. Nathan, W. Getz, E. Revilla, M. Holyoak, R. Kad-
mon, D. Saltz, and P. Smouse. A movement ecology
paradigm for unifying organismal movement research.
Proc. National Academy of Sciences, 105:19052–19059,
2008.

[15] A. Stohl. Computation, accuracy and applications of
trajectories – a review and bibliography. Atmospheric
Environment, 32(6):947 – 966, 1998.

[16] E. Terzi and P. Tsaparas. Efficient algorithms for
sequence segmentation. In Proc. 6th SIAM International
Conference on Data Mining, pages 314–325, 2006.

[17] B. van Moorter, D. R. Visscher, C. L. Jerde, J. L.
Frair, and E. H. Merrill. Identifying movement states
from location data using cluster analysis. J. Wildlife
Management, 74(3):588–594, 2010.

[18] X. Zhou, S. Shekhar, P. Mohan, S. Liess, and P. K. Sny-
der. Discovering interesting sub-paths in spatiotemporal
datasets: A summary of results. In Proc. 19th ACM
SIGSPATIAL Conference on Advances in Geographic
Information Systems, pages 44–53, 2011.

	Introduction
	Discrete vs. continuous segmentation

	General Approach
	The start-stop diagram
	Segmenting in the discrete case
	Segmenting in the continuous case

	Solving the Segmentation Problem in the Continuous Case
	Verticonvex cells only
	At most one tunnel per row

	Combining Criteria
	Lower Bounds
	Computing the Start-stop Diagram
	The outlier-tolerant criterion
	Discrete case
	Continuous case

	The standard deviation criterion
	Discrete case
	Continuous case

	Conclusions

