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Given a criterion C .
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For example: The minimum and maximum speed
differ by at most x .
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Partition T into a

satisfies C .

minimum #segments, s.t. each segment
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Criterion C is monotone if C holds on
[a, b] then C also holds on any
subsegment [a′, b′] ⊆ [a, b]

Solvable in O(n log n) time [Buchin, Driemel, van
Kreveld, Sacristan, 2011].
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Why?

To help analyze trajectory data,
e.g. in animal trajectories.

Formulate the behaviour in terms of
attributes like speed, heading, etc.

For example:
• The minimum and maximum speed

differ by at most x km/h.

• The direction of motion differs by at
most 90◦.
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Why?

To help analyze trajectory data,
e.g. in animal trajectories.

Formulate the behaviour in terms of
attributes like speed, heading, etc.

For example:
• On 95% of the segment, the minimum

and maximum speed differ by at most h.

• The standard deviation of the heading is
at most 45◦.

These critiria are non-monotone.
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Continuous vs
Discrete

Hard

Easy

May result in more segments.

Continuous: Segments may start
and end anywhere.

Discrete: Segments may start and
end only at vertices.
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Results

The standard deviation σ(a, b) on each
segment [a, b] is at most h.

Standard deviation criterion:

O(n2) time.



To segment T we:

• Compute the start-stop diagram
for the given criterion.
• Compute a segmentation using

the start-stop diagram.

Approach &
Results

On a fraction ρ of each segment [a, b] the min
and max value differ by at most h.

Outlier-tolerant criterion:

O(n2 log n) time.
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To segment T we:

• Compute the start-stop diagram
for the given criterion.
• Compute a segmentation using

the start-stop diagram.

Approach &
Results

Discrete:

Continuous: depends on the start-stop diagram:

O(n2)

NP-hardEasy
Verticonvex MultipleMonotone

O(kn2) O(k2n2)
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If C holds, (a, b) is in
the free space.

otherwise, (a, b) is in
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Note: If C is monotone we
have an xy -monotone curve

Segmenting the
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Every segment [a, b]
corresponds to a point (a, b) in
the start-stop diagram

If C holds, (a, b) is in
the free space.

otherwise, (a, b) is in
the forbidden space.

A segmentation corresponds to
a staircase .
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To segment T we:

• Compute the start-stop diagram.

• Compute a minimum link
staircase in the start-stop
diagram.
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To segment T we:

• Compute the start-stop diagram.

• Compute a minimum link
staircase in the start-stop
diagram.

Discrete: start-stop diagram is an n × n matrix.

Theorem 1. Given an n × n start-stop matrix, one
can check if a minimal discrete segmentation exists,
and if so compute it, in O(n2) time and space.
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To segment T we:

• Compute the start-stop diagram.

• Compute a minimum link
staircase in the start-stop
diagram.

Continuous:

Theorem 2. It is NP-complete to check if a valid
segmentation exists.
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To segment T we:

• Compute the start-stop diagram.

• Compute a minimum link
staircase in the start-stop
diagram.

Continuous:

T induces a grid on the start-stop diagram. We can
use that!
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We compute the reachable
space Ri : the points on the
diagonal reachable in ≤ i steps.
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Question: Can we bound the complexity of Ri?
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Continuous
Segmentation

(0, 0)

(1, 1)

We compute the reachable
space Ri : the points on the
diagonal reachable in ≤ i steps.

R2

Question: Can we bound the complexity of Ri?

The complexity of Ri depends on the type of
cells in the grid.
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Complexity Ri

• Verticonvex cells

Each verticonvex cell produces at
≤ 2 intervals in Ri .

Any vertical line intersects ≤ 1 region
forbidden space in a verticonvex cell.
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Complexity Ri

• Verticonvex cells

Each row of verticonvex cells produces
≤ 2 intervals in Ri .

Only verticonvex cells =⇒ Ri has complexity O(n)

Theorem 3. We can compute a minimal
segmentation in O(kn2) time.

Any vertical line intersects ≤ 1 region
forbidden space in a verticonvex cell.
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Complexity Ri

• Tunnel cells

Any vertical line intersects ≤ 2 regions
forbidden space in a tunnel cell.
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For each tunnel cell:
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Complexity Ri

• Tunnel cells

#outgoing intervals ≤ #vertices +
#incoming intervals + 2

Any vertical line intersects ≤ 2 regions
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For each tunnel cell:

(0, 0)

(1, 1)

Complexity Ri

• Tunnel cells

#outgoing intervals ≤ #vertices +
#incoming intervals + 2

Theorem 4. We can compute a minimal
segmentation in O(k2n2) time.

≤ 1 tunnel cell per row =⇒ Ri has complexity O(in)

Any vertical line intersects ≤ 2 regions
forbidden space in a tunnel cell.

start
st

op



(0, 0)

(1, 1)

Complexity Ri

• Other cells?
Ri may have complexity Ω(2i )
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Combining
Criteria

Question: Can we segment on
C1 ∨ C2, or C1 ∧ C2?

(0, 0)

(1, 1)

• C1 ∨ C2

If both C1 and C2 are
verticonvex, so is C1 ∨ C2

• C1 ∧ C2

If C1 and C2 are both verticonvex,
C1 ∧ C2 may not be verticonvex

We can solve C1 ∧ C2 if C1 is
monotone and C2 is verticonvex:

We get a grid with ≤ 1 tunnel cell per row.
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Computing a
start-stop diagram

(1, 1)

On a fraction ρ of each segment
[a, b] the min and max value
differ by at most h.

Outlier-tolerant criterion:

The standard deviation σ(a, b) on
each segment [a, b] is at most h.

Standard deviation criterion:

• Each cell has complexity O(1),

• Each cell is verticonvex,(0, 0)
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Traverse the cells column by
column from bottom to top.

Compute the forbidden space in
each cell.
Maintain additional information
(e.g. µ,

∑
).
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Computing a
start-stop diagram

(1, 1)

Traverse the cells column by
column from bottom to top.

Compute the forbidden space in
each cell.
Maintain additional information
(e.g. µ,

∑
).

Lemma 1. We can compute the start-stop diagram
for the standard deviation criterion in O(n2) time.

=⇒ minimal segmentation in O(kn2) time.
(0, 0)
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Computing a
start-stop diagram

(1, 1)

Traverse the cells column by
column from bottom to top.

Compute the forbidden space in
each cell.
Maintain additional information
(e.g. µ,

∑
).

Lemma 2. We can compute the start-stop diagram
for the outlier-tolerant criterion in O(n2 log n) time.

=⇒ minimal segmentation in O(n2 log n + kn2) time.
(0, 0)
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Computing a
start-stop diagram

(1, 1)

Discrete segmentation:

Same approach.

Standard deviation criterion: O(n2)

Outlier-tolerant criterion: O(n2 log n)
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Future Work

• How to handle piecewise linear
attributes?

• Characterization of the start-stop
diagrams that can be handled
efficiently.

• Sub-quadratic algorithms?
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Future Work

• How to handle piecewise linear
attributes?

• Characterization of the start-stop
diagrams that can be handled
efficiently.

• Sub-quadratic algorithms?

Thank you!
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