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ABSTRACT

One of the important tasks in the analysis of spatio-temporal data collected from moving

entities is to find a group: a set of entities that travel together for a sufficiently long period
of time. Buchin et al.2 introduce a formal definition of groups, analyze its mathematical

structure, and present efficient algorithms for computing all maximal groups in a given

set of trajectories. In this paper, we refine their definition and argue that our proposed
definition corresponds better to human intuition in certain cases, particularly in dense

environments.
We present algorithms to compute all maximal groups from a set of moving entities

according to the new definition. For a set of n moving entities in R1, specified by linear

interpolation in a sequence of τ time stamps, we show that all maximal groups can be
computed in O(τ2n4) time. A similar approach applies if the time stamps of entities are

not the same, at the cost of a small extra factor of α(n) in the running time, where α

denotes the inverse Ackermann function. In higher dimensions, we can compute all max-
imal groups in O(τ2n5 logn) time (for any constant number of dimensions), regardless

of whether the time stamps of entities are the same or not.
We also show that one τ factor can be traded for a much higher dependence on n

by giving a O(τn42n) algorithm for the same problem. Consequently, we give a linear-

time algorithm when the number of entities is constant and the input size relates to the
number of time stamps of each entity. Finally, we provide a construction to show that it

might be difficult to develop an algorithm with polynomial dependence on n and linear

∗A preliminary version of this paper appeared in Proc. 27th International Symposium on Algorithm
and Computation (ISAAC 2016)1
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dependence on τ .
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1. Introduction

Nowadays, inexpensive modern devices with advanced tracking technologies make

it easy to track movements of an entity. This has led to the availability of movement

data for various types of moving entities (human, animals, vehicles, etc.). Since a

tracking device typically returns a single location at each time stamp, each moving

entity will be represented by a moving point. Data may consist of just one trajectory

tracked over a period of time, or a whole collection of trajectories that are all tracked

over the same time period. Note that for the latter case, the locations of each

trajectory are not necessarily collected at the same time stamps. It is common to

denote the number of trajectories (or moving entities) by n and the number of time

stamps used for each trajectory by τ . Hence, the input size is Θ(τn). Depending on

the application, one of n or τ can be much larger than the other.

To analyze moving object data, a number of methods have been developed in

recent times. These methods perform similarity analysis or compute a clustering,

outliers, a segmentation, or various patterns that may emerge from the movement of

the entities (for surveys see Ref. 3,4). These methods are often based on geometric

algorithms, because the data is essentially spatial.

One particular type of pattern that has been well-studied is flocking.5–9 Intu-

itively, a flock is a subset of the entities moving together (or simply being together)

over a period of time. Other names for this and closely related concepts with slightly

different definitions are herds,10 convoys,11–13 moving clusters,14,15 swarms,16,17

mobile groups,18 traveling companions,19 and groups.2,20 Buchin et al.2 introduce

a model called the trajectory grouping structure which not only defines groups, but

also the splitting of a group into subgroups and its opposite, merging. The algo-

rithmic problem of reporting all maximal groups that occur in the trajectories is

solved in O(τn3 +N) time, where N ∈ O(τn4) is the output size (the summed size

of all groups reported). The algorithm also considers times in between the τ time

stamps where the locations are recorded as relevant. In between these time stamps,

locations are inferred by linear interpolation over time.

In this paper we continue the study of such groups, but we propose a refined

definition to the one by Buchin et al.2 We motivate why it captures our intuition

better and present algorithms to compute all maximal groups.

Previous definition of a group

The definition of a group by Buchin et al.2 relies on three parameters: one for the

distance between entities, one for the duration of a group, and one for the size of a

group. We review their definitions next.

For a set of moving entities X , two entities x and y are directly ε-connected at

time t if the Euclidean distance between x and y is at most ε at time t, for some
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given ε ≥ 0. Two entities x and y are ε-connected in X at time t if there is a

sequence x = x0, ..., xk = y, with {x0, ..., xk} ⊆ X and for all i, xi and xi+1 are

directly ε-connected at time t.

In Ref. 2, a group for an entity inter-distance ε, a minimum required duration

δ, and a minimum required size m, is defined as a subset G ⊆ X and corresponding

time interval I for which three conditions hold:

(i) G contains at least m entities.

(ii) I has a duration at least δ.

(iii) Every two entities x, y ∈ G are ε-connected in X at all times in I.

Furthermore, a group G with time interval I is maximal if there is no time

interval I ′ ⊃ I for which G is also a group, and there is no proper superset G′ ⊃ G
that is also a group during I.2

Refined definition of a group

One issue with the previous definition is that it does not correspond fully to our

intuition. Two entities x and y may form a (rather small) maximal group in an

interval I even if they are always far apart, as long as there are always entities of

X in between them to make x and y ε-connected in X . These entities in between

are not part of the maximal group, but they do cause x and y to be ε-connected by

the previous definition. This can have counter-intuitive effects especially in dense

crowds. To avoid such issues, we refine the definition of a group. In particular, we

replace condition (iii) above by:

(iii’ ) Every two entities x, y ∈ G are ε-connected in G during I.

Note that with this refined definition, a group is like a convoy,11 with one main

difference: a group is defined for both the continuous and the discrete model of

a trajectory, whereas a convoy is defined only for the discrete model. We define

maximal groups analogous to the previous definition by Buchin et al.,2 but now

based on the refined definition of groups.

We give two examples that show the difference in these definitions.

First, consider a number of stationary entities S and two entities x and y, see

Fig. 1. Entity x starts (at time t0) to the North of S and moves around its perimeter

to the East. Entity y starts (at t0) to the South and also moves around the perimeter

to the East. After encountering (at t1) each other at the East side, both continue

together eastward, away from the stationary entities in S (ending at t2). By the

definition in Ref. 2, x and y form a maximal group in the interval [t0, t2]. By our

refined definition, they form a maximal group during [t1, t2], starting when x and

y are at distance ε and actually encounter each other.

Second, the previous definition can even see groups of entities that were never

close, see Fig. 2. Here, {a, h} is a maximal group in the interval I = [t1, t3] using the

definition in Ref. 2. At each time, a and h are ε-connected, but through different

subsets of entities. By choosing the coordinates carefully, we can ensure that no

supergroup of {a, h} is also a group in the same time interval, and hence {a, h} will
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Fig. 1. In the previous definition (see Ref. 2), x and y are ε-connected during [t0, t2]
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Fig. 2. Entities in G = {a, h} are ε-connected using entities not in G.

be maximal. Although a and h move in the same direction with the same speed,

intuitively they do not form a group because they are too far apart and separated

by other entities that move in the opposite direction. With our refined definition,

we do not consider {a, h} a group in the interval I, and hence also not a maximal

group.

Results and Organization

We have refined the previous definition for a group of moving entities by Buchin

et al.2 and gave two examples and argue why our refined definition can give an

intuitively plausible group. From now on, we will use the term “group” to denote a

group of entities that comply with our refined definition.

In the following section, we show that for a set X of n moving entities in R1

with τ time stamps each, the number of maximal groups by the refined definition

is O(τn3), which is tight in the worst case.

In Section 3, we present algorithms to compute all maximal groups in R1. First

we consider the case where all trajectories have their vertices at the same time

and begin with a basic algorithm for that runs in O(τ3n6) time. Subsequent im-

provements lead to a running time of O(τ2n4). When the time stamps of different

trajectories are not the same, we show that our algorithm runs in O(τ2n4α(n))

time.

Next, for moving entities in Rd (d > 1), we model entities and their inter-distance

into graphs and show that all maximal groups can be computed in O(τ2n5 log n)

time, regardless the uniformity of the time stamps in the trajectories. We show how

to achieve this bound in Section 4.

In Section 5, we consider situations where the value of n is significantly smaller

than τ , which is typical in real-life moving entity datasets. We give an O(τ2nn4)

time algorithm for entities that move in any constant dimension.
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Finally, we show an exponential bound on the number of maximal groups that

can contain any given time t in the last section.

2. Preliminaries

Let X be a set of n entities moving in R1, given by locations at τ time stamps. A

trajectory of an entity in X can be expressed by a piecewise-linear function which

maps time to a point in R1. If R1 is associated with the vertical axis and time with

the horizontal axis of a 2-dimensional plane, the trajectories of entities in X are

polylines with τ vertices each. We will use the same notation to denote an entity

and its trajectory.

Let dij(t) be the Euclidean distance between i ∈ X and j ∈ X at time t. When

dij(t) = ε, we say that an ε-event occurs. For any ε-event v, we denote by tv the

time when v occurs and ω(v) the function that returns the two entities that create

v. We assume that no two or more ε-events occur at the same time.

Consider an ε-event v; let ω(v) = {i, j}. If the distance between i and j is more

than ε immediately before tv, then v is a start ε-event; if this happens after tv, then

v is an end ε-event. If there is no entity k ∈ X located strictly in between i and j

at tv (so dik(tv) + djk(tv) = ε), then we say that v is a free ε-event.

For clarity, we assume that there are no two parallel edges of trajectories with

distance ε. This assumption can be lifted without complications; we just need to

handle such situations in the appropriate manner.

Observation 1. The number of ε-events is O(τn2).

Let G be a group of entities in time interval I that is maximal in size. All entities

in G are pairwise ε-connected in the interval I, and hence, there are no free ε-events

in G during I. In the arrangement of trajectories from G, we define the height of a

face as the length of the longest vertical line segment inside the face. Thus, no face

has height greater than ε.

It is also clear that G can begin only at a start ε-event and end only at an end

ε-event. Furthermore, we observe that if a start ε-event (or end ε-event) of G is not

a free ε-event with respect to the entities in G, then before (or after) the interval

I, entities in G are still pairwise ε-connected and we can extend the interval of G.

Therefore, G can be a maximal group only if both the start ε-event and end ε-event

are free ε-events (but this is not a sufficient condition).

Observation 2. There can be at most one maximal group that starts and ends at

a particular pair of start ε-event and end ε-event.

Theorem 3. For a set X of n entities, each entity moving along a piecewise-linear

trajectory of τ edges, the maximum number of maximal groups is Θ(τn3).

Proof. Any group G that starts at a start ε-event contains at most n entities.

When a free end ε-event involving G occurs, only group G ends but a subgroup of
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G with fewer entities may continue longer. This can happen at most n − 1 times.

Therefore, the maximum number of maximal groups is O(τn3).

For the lower bound on the number of maximal groups, we use the same con-

struction given by van Goethem et al.21 Although they use the previous definition

by Buchin et al.2 to define a group, the construction itself also works for our refined

definition of a group. They start by building a construction in which all n entities

move along lines and show that there can be Ω(n3) maximal groups. Then, repeat-

ing the construction Ω(τ) times gives Ω(τn3) as a lower bound on the number of

maximal groups.

The approach to compute all maximal groups is to work on the arrangement A
of line segments that are the trajectories. For a subset G ⊆ X and interval I, we

can remove entities from G that are separated at a face with height larger than ε in

I (corresponding to a free ε-event). Only if there are no such faces, the remaining

entities in G can be a group. Note that removing entities in G involves removing

the corresponding trajectories from the arrangement A, which can cause new faces

that are free ε-events.

3. Algorithms for Entities in R1

In this section, first we consider the case where the trajectories have the same time

stamps. We present a basic algorithm that computes all maximal groups in O(τ3n6)

time for entities moving in R1. Then we present a more efficient algorithm that runs

in O(τ2n4) time. Furthermore, we present an O(τ2n4α(n)) time algorithm if the

vertices of the trajectories have different time stamps.

3.1. Basic Algorithm

We describe a simple algorithm to compute all maximal groups. Let Vs and Ve be

the sets of all start ε-events and all end ε-events, respectively. Fix one event of each

type: β ∈ Vs and γ ∈ Ve. By Observation 2, there is only one maximal group G

that starts at β and ends at γ. Furthermore, observe that G necessarily contains

the entities ω(β) = {a, b} and ω(γ) = {c, d}, and that if G is a maximal group on

I = [tβ , tγ ], then all entities in G are on the same side at time tλ ∈ (tβ , tγ) when a

free ε-event λ occurs. We then use the following approach to find G (if it exists):

(1) Initialize a set G containing all entities in X .

(2) Build an arrangement A induced by the trajectories of the entities in G

on I.

(3) A face f in A contains a free ε-event λ if (and only if) the height of f is

more than ε. If f has height larger than ε, test if (the trajectories of) a,

b, c, and d, all lie on the same side of f . If not, there is no maximal group

G that starts at β and ends at γ. If they do pass on the same side, let

S denote the set of entities whose trajectories lie on the other side of f .
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Fig. 3. Removing trajectory p (due to the free ε-event λ) causes the ε-event π to become a free

ε-event.

Remove these entities of S from G, and remove their trajectories from A.

Observe that new free ε-events may appear because removal of a trajectory

from A merges two faces of A into a larger one. See Fig. 3. Repeat this step

until there is no more free ε-event λ with tλ ∈ (tβ , tγ).

(4) Check that β and γ are now free. If so, G is a maximal group on I, and

hence we can report it. If not, G is actually a group during a time interval

I ′ ⊃ I. Hence, G may be maximal in size, but not in duration. We do not

report G in this case.

Theorem 4. Given a set X of n entities in which each entity moves in R1 along

a trajectory of τ edges, all maximal groups can be computed in O(τ3n6) time using

the Basic Algorithm.

Proof. The number of combination of a pair of start and end ε-events is O(τ2n4).

Building an arrangement from trajectories of entities takes O(τn2) time. Removing

a trajectory e and checking new faces in A takes time proportional to the zone

complexity of e: O(τn). Since there are at most n trajectories to be removed, the

whole process to remove entities for each interval I takes O(τn2) time. Therefore,

the running time of the algorithm is O(τ3n6) time.

3.2. Improved Algorithm

The previous algorithm checks every pair of possible start and end ε-events β and γ

to potentially find one maximal group. To improve the running time, we fix a start

ε-event β and consider the O(τn2) end ε-events γ in increasing order. We show that

we can check for a maximal group on [tβ , tγ ] in amortized O(1) time.

We build the arrangement A for all trajectories, starting from time tβ , and sort

the end ε-events γ, with tγ > tβ on increasing time. We then consider the end

ε-events γ in this order, while maintaining a maximal set G that is ε-connected in

G throughout the time interval [tβ , tγ ].

Let ω(β) = {a, b} be the entities defining the start ε-event β, and let G ⊇ {a, b}
be the largest ε-connected set on [tβ , tγ ]. We compute the largest ε-connected set
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on [tβ , tγ′ ] for the next ending event γ′ as follows. Note that this set will be a subset

of G.

Let S be the set of entities that separate from a and b at γ. We remove all

trajectories from the entities in S from A. As before, this may introduce faces of

height larger than ε. For every such face f , we check if a and b still pass f on the

same side. If not, there can be no maximal groups that contain a and b, start at tβ ,

and end after tγ . If a and b lie on the same side of f , we add all entities that lie

on the other side of f to S and remove their trajectories from A. We repeat this

until all faces in A that have non-empty intersection with the vertical strip defined

by [tβ , tγ′ ] have height at most ε (or until we have found a face that splits a and

b). It follows that the set G′ = G \ S is the largest set containing a and b that is

ε-connected throughout [tβ , tγ′ ]. If β and γ′ are free with respect to G′ then we

report G′ as a maximal group.

Building the arrangement A takes O(τn2) time, and sorting the ending-events

takes O(τn2 log(τn)) time. By the Zone Theorem, we can remove each trajectory

in O(τn) time. Checking the height of the new faces can be done in the same time

bound. It follows that the total running time is O(τn2(τn2 + τn2 log(τn) + R))

where R is the total time for removing trajectories from the arrangement. Clearly,

R is bounded by the complexity of the arrangement: O(τn2). So, the total running

time is O(τ2n4 log(τn)).

Further Improvement

We can avoid repeated sorting of end ε-events by pre-sorting them in a list, and for

each start ε-event, use this list. The list will contain events that do not concern the

entities involved in the start ε-event, but this can be tested easily in constant time.

Thus, we conclude:

Theorem 5. Given a set X of n entities in which each entity moves in R1 along

a trajectory of τ edges, all maximal groups can be computed in O(τ2n4) time.

Next, we consider finding all maximal groups when the vertices of different

trajectories do not have the same time stamps. We use the same idea as in the

above algorithm: take one start ε-event β at a time and remove trajectories to find

all maximal groups containing ω(β).

We use a similar strategy to split trajectories vertically into τ cells as in Ref. 22,

where each cell now contains O(n) segments of trajectories. It follows that the com-

plexity of each cell is bounded by the number of possible intersections between seg-

ments: O(n2). Thus, building the arrangement A still takes O(τn2) time. However,

by the Zone Theorem for an arrangement of line segments, removing a trajectory in

each cell now takes O(nα(n)) time,23 where α(n) is the inverse Ackermann Func-

tion. Therefore, the total time to remove trajectories in A is O(τn2α(n)) time and

we obtain:

Theorem 6. Given a set X of n entities in which each entity moves in R1 along
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Fig. 4. At t2, β is not a free ε-event because a and c are still ε-connected through b. At t3, a and

b create the free ε-event γ.

(i) (ii) (iii)

a

bd

c
a b

dc

a b

dc
β

γ

Fig. 5. Two ε-events β and γ. (i) The maximal group {a, b, c, d} has a time interval [tβ , tγ ]. (ii)

Connectivity of the graph after tβ . A new edge appeared connecting a and b. (iii) Connectivity of

the graph after tγ . The edge between c and d disappeared.

a trajectory of τ edges under the condition that their vertices have different time

stamps, all maximal groups can be computed in O(τ2n4α(n)) time.

4. Algorithms for Entities in Rd

In Rd (d > 1), it is harder to test whether an ε-event really connects or disconnects

because the two entities may be ε-connected through other entities in the group,

see Fig. 4. This observation immediately gives the condition for an ε-event to be

free.

We model our moving entities as a graph where vertices represent entities and

an edge exists if two entities are directly ε-connected. As shown by Parsa,24 we can

maintain the graph under edge updates, while allowing same component queries, in

O(log n) time per operation.

To compute maximal groups, we start at a start ε-event β, where ω(β) = {a, b},
and maintain the connected component C throughout the sequence of sorted ε-

events. At each ε-event γ, we remove any vertices that are disconnected from C and

start again from β in case we remove anything. We stop if a and b are disconnected.

If β is a free ε-event when we reach γ again, we report C as a maximal group and

continue. See Fig. 5 for an example of how the algorithm works.

We start at O(τn2) ε-events and for each, we process O(τn2) ε-events. We may

need to restart this process up to n − 1 times. In Rd, our approach only examine

the ε-events of entities and does not affected by whether the vertices of trajectories
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have the same time or not, therefore we obtain the same result for both cases:

Theorem 7. Given a set X of n entities moving in Rd along a trajectory of τ

edges, all maximal groups can be computed in O(τ2n5 log n) time.

5. Algorithms with Linear Dependence on τ

In many real-life situations, GPS is used for collecting trajectory data from human,

vehicle or animal movement. Since it may record the position of an entity frequently

and over a period of time, the number of vertices in each trajectory is often much

larger than the number of moving entities.25 Therefore, the dependence of the algo-

rithm on τ is more important than the dependence on n. Next, we present a simple

algorithm that is linear in τ , at the cost of an exponential dependence on n. In

particular, our algorithm will compute all maximal groups in O(τn42n) time.

We consider all 2n subsets of X in order of decreasing size, while maintaining the

set of maximal groups found so far (ordered by increasing starting time). For each

subset G we determine the maximal time intervals during which G is ε-connected,

and for each such interval I we check if G is dominated by a maximal group H ⊃ G
on I. If such a set does not exist, then G is a maximal group on I. Notice that we

only need to know when the start ε-event and end ε-event of a particular group

occurs. Therefore, this algorithm can be applied for both cases where the vertices

of trajectories have the same or different time stamps.

For each subset G, we consider the ε-events generated by the entities in G. We

can compute all theseO(τn2) ε-events inO(τn2 log n) time, by sorting the batches of

O(n2) ε-events between two consecutive time stamps separately, and concatenating

the resulting τ lists. We then go through the ε-events in order, and check if G is

ε-connected at every ε-event. We can easily handle every event in O(n2) time, by

naively checking if the entities in G are ε connected (we can easily improve on this,

but the total running time will be dominated by the number of sets anyway). It

follows that we can compute the sequence SG of maximal time intervals on which

G is ε-connected in O(τn4) time. Note that SG contains at most O(τ) such time

intervals.

For each interval I in SG we now have to check if G is a maximal group during

I. The set G is a maximal group on I if and only if there is no maximal group

H ⊃ G on a time interval that contains I. Since we maintain the maximal groups

larger than G (and the time interval on which they are a maximal group), ordered

by increasing starting time, we can iterate through them once, and extract the

maximal groups that are a superset of G. Fig. 6 shows the sequence of maximal

time intervals found by the algorithm when processing the entity set G = {a, b} and

its supersets.

Since by Theorem 3 there are at most O(τn3) maximal groups, this takes at

most O(τn4) time. Let I denote the set of time-intervals corresponding to those

groups, ordered by increasing starting time. We now simply scan through SG and I
simultaneously, while maintaining the time interval in I that started earliest and has
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c
d

a

b
S{a,b,c,d}

S{a,b,c}

S{a,b,d}

S{a,b}

Fig. 6. The sequences of maximal time intervals for G = {a, b} and all of its supersets. The three

time intervals at the bottom are found when processing G; the other ones were found earlier. The
dashed time intervals do not give rise to a maximal group.

not ended yet. For every interval I in SG we can then check if G is a maximal group

on I in constant time. In total this takes O(τn3) time. Using a similar simultaneous

scan we can add the intervals on which G is maximal to our set of maximal groups

found so far.

It follows that we can compute all time intervals on which G is maximal in

O(τn4) time. Since we do this for all subsets G ⊆ X we obtain the following result.

Theorem 8. Given a set X of n entities in which each entity moves in Rd along a

trajectory of τ edges, we can compute all maximal groups in O(τn42n) time, using

O(τn3) space.

6. A Lower Bound on the Maximum Number of Maximal Groups

at some Time t

The result in the previous section shows that, when τ is large but n is small, we

can improve the dependence on τ from quadratic to linear. However, we pay for

this by having an exponential dependence on n. This naturally raises the question

whether an algorithm with linear dependence on τ , but polynomial dependence on

n, is possible. While we do not know the answer to this question, we present a

construction which may indicate that such a result is hard to obtain, if possible at

all.

We show that the number of maximal groups that contain a given time t can

be exponential in n, provided that τ is sufficiently large. Without the requirement

that the maximal groups must span a single moment in time, it is easy to make a

construction of trajectories that has a number of maximal groups that is linear in τ ,

even with just two entities, so it is unbounded in n. Similarly, we can easily construct

trajectories that give rise to 2n − n − 1 maximal groups (with a group size of at
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least 2) that are different in composition using roughly 2n time stamps by making

these groups consecutive. The construction that we present, where many different

maximal groups occur simultaneously, is more involved, and shows that there may

be Ω(
√

2
n
) maximal groups simultaneously when there are Ω(

√
2
n
) time stamps.

While the result does not imply any lower bound for the problem of computing all

maximal groups, it suggests that it may be difficult to obtain an algorithm that is

linear in τ and polynomial in n. Several natural approaches to the problem (based

on, for instance, divide-and-conquer) appear not to work due to this construction

and the result on simultaneous maximal groups.

Theorem 9. There exists a set X of n entities in R1 whose trajectories are defined

by Θ(
√

2
n
) time stamps, for which the number of maximal groups at some time t

is Ω(
√

2
n
).

Proof. We use a set of n = 2k + 2 entities, denoted p1, . . . , pk, p′1, . . . , p
′
k, and q

and q′. We are interested in counting the groups that contain q, q′, and for each i,

exactly one of pi and p′i. We call any such group k-max and will show that they are

all maximal. A k-max group G is encoded by a length-k bitstring where the i-th bit

is 1 if pi ∈ G and it is 0 if p′i ∈ G.

We make a construction with the following properties; the half after tmid is

illustrated for k = 3 in Fig. 7:

(1) The trajectory of pi is the reverse of p′i, with respect to tmid (that is,

mirrored in tmid), and vice versa.

(2) A k-max group starts and ends at free εq-events of q and q′.

(3) A k-max group encoded by bitstring B starts a fraction after time 1 + B

and ends a fraction before time tmid + 1 + B, where B is interpreted as a

binary number.

(4) There are only O(1) trajectory vertices of each trajectory within one time

unit.

(5) Each k-max group is maximal.

At tmid, all trajectories pass through a single point to ensure they are continuous

when mirroring, and they are pairwise directly ε-connected. It is the moment in time

for which Ω(
√

2
n
) maximal groups exist, as we will show. After tmid, the entities

q and q′ will have 2k pairs of ε-events: an end ε-event directly followed by a start

ε-event. We call these events εq-events. Whether these εq-events are free for a k-max

group G depends on the time and the bitstring, or equivalently, which entities from

p1, . . . , pk are in G.

The εq-event at a time t is free for a k-max group G if and only if the bitstring

corresponding to time t is the same as the bitstring of G. Hence, (assuming that no

earlier ε-event ends G) G will end at the time of its bitstring, so a fraction before

tmid + 1 +B. By symmetry of pi and p′i, G will start a fraction after time 1 +B. In

Fig. 7, for example, at time tmid + 4, the k-max group {p′1, p2, p3, q, q′} ends.
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tmid

q′
q

p′
3

p′
2

p′
1p1

p2
p3

γε

tmid+2,
001

tmid+3,
010

tmid+1,
000

tmid+4,
011

tmid+6,
101

tmid+7,
110

tmid+5,
100

tmid+8,
111

β

Fig. 7. Right half of the lower bound construction for k = 3. The times very near the start and

end ε-events of q and q′ are shown together with the bitstring of the k-max group that ends there.
At tmid, all trajectories are in a single point (the trajectories are not shown near tmid).

The other ε-events of the trajectories are between two consecutive εq-events.

These ε-events involve the entities of p′1, . . . , p
′
k and the trajectories need three

vertices between εq-events. Their presence ensures that only one of pi or p′i is in

a particular k-max group. Notice that these ε-events will also be the start or end

ε-events of maximal groups that are supersets of a k-max group.

Suppose p′i is an entity that creates a free ε-event β just before a k-max group

G containing pi ends at tmid + B. Obviously, p′i only needs to create such a free

ε-event once and it follows this is only necessary if the previous k-max group G′

that ends at tmid + B − 1 is not containing pi. However, other k-max groups that

will end after G might contain p′i. Therefore, to prevent this ε-event becomes free

in the duration of those k-max groups, we make entities of p1, . . . , pk that are not

in G to keep p′i ε-connected to all other entities. Still, not all of them are needed

to prevent β to become free, but only for each entity p′h where h < i, because by

the ordering of the bitstrings, k-max groups contain p′i and those entities might end

after β. See Fig. 7: before ε-event β, only p1 prevents p′2 from creating a free ε-event

(but not p3). Two k-max groups contain p1,p′2 and one of p3 or p′3 end after β while

k-max group of {p′1, p′2, p3} ends before β.

Claim 6.1. If a maximal group containing time tmid contains at least pi or p′i for

all indices i, and both pi and p′i for at least one index i, then its time interval cannot

contain both time h and tmid + h for any integer h.

Proof. Suppose for contradiction G is a maximal group which contains both pi
and p′i, and its time interval fully contains an interval [h, tmid + h] for some integer

h; suppose further that i is the smallest index for which this is the case. Let B be

the bitstring that encodes the entities with indices 1 . . . i− 1; let B− = B0111 . . . 1

be obtained from B by appending a single 0 and k− i 1s and let B+ = B1000 . . . 0

be obtained from B by appending a single 1 and k− i 0s. Then G starts not earlier

than some time between B− and B+, and ends not later than some time between
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tmid + B− and tmid + B+. Refer to Fig. 7. Hence, there is no integer h such that

both h and tmid + h are contained in the time interval of G.

The claim directly implies that all k-max groups are maximal, because by Prop-

erty 3 they start and end at some time h and tmid + h, but adding any other

trajectories will cause both pi and p′i to be in the group for some i.

Moreover, the ε-events created by entities of p′1, . . . , p
′
k are also the end ε-events

of the 2k − 1 groups that have more entities than a k-max group. Let the maximal

group contains all entities end at free ε-event γ at time tγ = tmid + 2k−1 + T

(0 < T < 1) created by p′i. By the symmetry of the construction and the ordering

of the bitstrings, two groups of n− 1 entities not containing either p′i or pi will end

at time tγ − 2k−2 and tγ + 2k−2, respectively. Then, continuing the same process

with the two groups recursively will results on other maximal groups with different

entities. Since the start and end ε-events of these groups are always start later

or end earlier than k-max groups, then these groups are maximal because their

interval will not contain interval of other maximal groups. Clearly, the number of

these maximal groups is fewer than k-max groups because their ε-events only occur

between two consecutive εq events. In Fig. 7, p′1 defines γ, the end ε-event for a

maximal group containing all entities. Then, maximal group that are not contain

p1 or p′1 will end before or after γ, respectively.

To build the construction, all trajectories must have a constant times 2k vertices

for the ε-events of q and q′ and a constant number of vertices in between those ε-

events. Each trajectory in the construction has Θ(
√

2
n
) vertices. We conclude that

the number of maximal groups that contain time tmid in this construction is at least

2k = 2n/2−1 = Ω(
√

2
n
). �

7. Conclusions and Future Work

In this paper we introduced a variation on the grouping structure definition2 and

argued that it corresponds better to human intuition. The number of maximal

groups that can arise in a set of n moving entities is Θ(τn3) in the worst case. We

have given an algorithm for trajectories moving in R1 that computes all maximal

groups and runs in O(τ2n4) time. In Rd, our algorithm runs in O(τ2n5 log n) time.

For the more general case where the input trajectories do not have time-aligned

vertices, the algorithm for trajectories in R1 can be extended at the cost of an extra

factor of α(n), while the same result still holds for trajectories in Rd.
Furthermore, we presented an algorithm that has only linear dependence in τ ,

at the expense of exponential dependence in n. Since collections of trajectories are

often very large in the number of time stamps and not necessarily in the number

of trajectories, this algorithm or a practical variation on it may still be useful.

This algorithm is not affected by whether or not the vertices of the trajectories are

aligned in time.

The trade-off in the dependence on n and τ gives rise to interesting open prob-
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lems. Most importantly, is it possible to develop an algorithm whose running time is

linear in τ and polynomial in n? Similarly, can we realize subquadratic dependence

on τ without having exponential dependence on n? In general, what trade-offs are

possible?

Future work includes implementing our algorithms and experimentally showing

the differences between the definition of groups by Buchin et al.2 and our refined

definition, both qualitatively and quantitatively. It would also be interesting to

develop an output-sensitive algorithm that uses considerably less time if the output

is small, or under realistic input assumptions. Finally, it would be interesting to

investigate whether one can develop algorithms that take geodesic distance into

account to define direct ε-connectedness instead of the straight-line distance, as

was done for the previous definition of a group.22

Acknowledgements
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