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One-to-one Point Set Matchings for Grid Map Layout*

David Eppstein?

Abstract

We study several one-to-one point set matching prob-
lems which are motivated by layout problems for grid
maps. We are given two sets A and B of n points
in the plane, and we wish to compute an optimal
one-to-one matching between A and B. We consider
two optimisation criteria: minimising the sum of the
L;-distances between matched points, and maximis-
ing the number of pairs of points in A for which the
matching preserves the directional relation. We show
how to minimise the total Li-distance under transla-
tion or scaling in O(n®log®n) time, and under both
translation and scaling in O(n'®log®n) time. We
further give a 4-approximation for preserving direc-
tional relations by computing a minimum L;-distance
matching in O(n?log®n) time.

1 Introduction

We study two point set matching problems motivated
by geographic information visualization, specifically
by the layout of grid maps. Grid maps are a special
type of single-level spatial treemap [11]. The input is
a set of geographic locations or regions (represented
by their centroids) which are mapped one-to-one to a
grid of equal-sized rectangles (see Fig. 1). Within the
rectangle corresponding to each region or location, ad-
ditional information can be displayed, see for example
the London BikeGrid (gicentre.org/bikegrid). To
aid the user in identifying the regions in the grid map
it is essential that the (relative) positions of the input
are preserved as much as possible.

We are now given a set of n points A (the geo-
graphic locations or region centroids) and a set of n
points B (the centers of the grid cells) and we want to
compute an optimal one-to-one matching ¢ between
A and B. We consider two optimisation criteria:
(¢) minimising the sum of the L;-distances between
matched points under translation, scaling, and both
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Figure 1: A grid map of the London boroughs.

scaling and translation of point set A, and (i) max-
imising the number of pairs of points in A for which
the matching preserves the directional relation. That
is, if a point as lies northwest of point ai, then we
would like ¢(az) to lie northwest of ¢(ap) as well.

Related Work. Point set matching problems have
been studied extensively. We review some of the min-
imum distance matching methods that are most re-
lated to our work. A more extensive survey of existing
methods is presented by Alt and Guibas [1], or more
recently by Veltkamp and Hagedoorn [10].

Atkinson [4] presents an algorithm for computing a
one-to-one matching in case the input point sets are
assumed to be copies the same point set, possibly with
affine transformations applied on them. His algorithm
runs in O(nlogn) time.

Hong and Tan [7] present a similar approach which
can also be used when the points sets are not ex-
act copies of each other. They allow a point p to be
matched to ¢ if ¢ lies in the error area E(p) of p:
a convex polygon for which the distance between p
and the closest point on the boundary of E(p) and
the distance between p and the furthest point on the
boundary differs by at most a constant factor. It is
assumed that p is contained in E(p), and that for any
point ¢ we can check if F(p) contains ¢ in constant
time. Furthermore, all error regions are pairwise dis-
joint. Sprinzak and Werman [8] extend Hong and
Tan’s method for point sets in arbitrary dimensions.

Alt et al. [2] present algorithms for several types of
point set matching problems. Their algorithms can
handle both the Lo-metric, and the L..-metric. In
case all points have disjoint error areas with radius
e (a disk with radius € in the Euclidean case and a
square with side lengths 2¢ in case of the L.-metric)
they present an O(nlogn) time algorithm to compute
the minimum distance matching, and the translation
that yields this matching.
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In case the error regions are not given, but instead
we should decide whether or not there is a translation
with corresponding matching such that the distance
between a pair of matched points is at most €, Alt
et al. [2] present an O(n%) time algorithm. When we
actually want to find the smallest such e the running
time increases to O(n%logn). Finally, Alt et al. [2]
show that if we want to allow rotation and reflection as
well we can solve the decision version of the problem
in O(n®) time.

Vaidya [9] studies computing a minimum weight
complete matching in a graph G of 2n points in which
the weights are given by the distance between the
points. He shows that for the Li-, Lo-, and Lo-
distance an optimal matching can be computed in
O(n?®log* n) time, or O(n*%logn) in case G is bi-
partite. For the Li- and L.,-metrics this can be im-
proved to O(n?log®n). This is the algorithm we will
use to compute basic one-to-one matchings without
translation or scaling.

Efrat and Itai [6] investigate bottleneck matching.
They show how to find a one-to-one matching that
minimises the L. -distance in O(n® log2 n) time. This
improves the results of Alt et al. [2] by almost a fac-
tor n. For the decision version of the problem their
algorithm runs in O(n®logn) time.

There is also a point set matching approach by Co-
hen and Guibas [5] which uses the Earth Mover’s Dis-
tance. In this setting each point has a certain weight.
The amount of work to match a point a € A with a
point b € B is determined by the distance between a
and b and the weight of a that is matched to b. The
earth mover’s distance expresses the minimum work
required to match A and B. When using the L3-
distance Cohen and Guibas [5] present an algorithm
that computes an optimal transformation of A and
a minimum distance matching. For other distances
their method yields only a locally optimal transfor-
mation and matching.

Alt et al. [3] propose a probabilistic method for
matching planar regions. Their algorithm picks a ran-
dom set of points A in one region and a random set of
points B in the other. It then computes a transforma-
tion (consisting of a translation and a rotation) such
that the area of overlap between the planar regions is
close to maximal. They argue that it may be possi-
ble to extend their approach to compute a minimum
distance matching under affine transformations.

Organisation. In the next section we consider min-
imum [L;-distance matchings. We first compute an
optimal matching under translation, and then adapt
our approach to compute a minimum distance match-
ing under scaling, and both translation and scaling. In
Section 3 we then consider matchings that preserve di-
rectional relations. Interestingly, we use an algorithm
that computes a minimum L;-distance matching to
obtain a 4-approximation for this problem.

2 Minimising L-distance

We first define some notation. For a point a = (ay, ay)
and a translation t = (t;,t,) we write a +t = (a, +
tz,ay + ty). We also use this notation for a set of
points: A+t = {a+t | a € A}. Similarly, for a
scaling A = (Mg, Ay) we write Aa = (Ag-az, Ay-ay). A
transformation (either translation or scaling) in which
both components have the same value ¢ we denote by
¢ =(c0).

Let ¢ : A — B be a one-to-one matching for the
point sets A and B, let t be a translation and let A
be a scaling. Then we define the total distance of
matching ¢ with translation ¢ and scaling A as

D(¢,t,A) =Y d(Aa+t,¢(a))

a€A

where d(a, b) denotes the Li-distance between a and b.
We can decompose d into a horizontal and a vertical
component: d(a,b) = z(a,b) + y(a,b) with z(a,b) =
laz — by| and y(a,b) = |ay, — by|. We generalise this
notion to D, which gives us D(¢,t,A) = X (¢,t,\) +
Y(¢,t,\).

Additionally, we define Dy (¢,t) = D(¢,t,1),
DA((ba )‘) = D(¢,67 )‘) and DI(¢) = D(d’ﬁﬁ) The
functions X7, Y7, X4, etc. are defined accordingly.

We now want to find a matching together with a
translation and/or scaling that minimises the total
distance. More formally, let ® be the collection of all
one-to-one matchings between A and B, let T be the
collection of all translations, and let A be the collec-
tion of all scalings, then we try to find a matching
¢* € &, a translation t* € T, and a scaling \* € A
such that

D<¢*’t*7A*) = D<¢7t5A)'

min
ped,teT ,AEA

Minimising L; under translation. To find a
minimum distance matching under translation, i.e. a
matching that minimises Dy, we identify a (finite)
set of translations 7' C T that contains an optimal
translation. We then use one of the existing one-to-
one matching algorithms for each translation in T to
compute an optimal matching.

We say a translation t is a horizontal translation if
and only if ¢ = (¢,0) for some ¢ € R. Two point sets
A and B are z-aligned if (and only if) there is a point
a € A and a point b € B with a, = b,. We define
vertical translation and y-aligned symmetrically.

We now observe that for any matching ¢ between
point sets A and B that are not z-aligned we can de-
crease D (¢) by z-aligning A and B (Fig. 2). Hence:

Lemma 1 Let A and B be two non z-aligned sets
of n points in the plane, and let ¢ be any one-to-one
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Figure 2: We can improve a matching between A
(grey) and B (white) indicated by the dashed lines
by z-aligning the point sets (the dotted lines).

matching between A and B. Then there is a horizon-
tal translation t* # 0 such that A* = A+ t* and B
are x-aligned and Dy (¢,t*) < Dy(¢).

Due to the lack of space, we omit the details of the
proof. The crucial observation is that for a given ¢,
X'(t) = X7(¢,t) is a piecewise linear function in ¢
that has its minimum at a breakpoint. Such a break-
point corresponds to aligning the point sets. An anal-
ogous argument gives us that we can decrease Y7 by
y-aligning two non y-aligned sets of points.

Consider the set T' of translations that both z-align
and y-align A and B. A translation t € T' z-aligns a
pair of points (a, b), and independently y-aligns a pair
of points (a’,b'). This means T contains at most n?
translations.

From Lemma 1 (and its counterpart for y-aligning
the point sets) it follows that T' contains an optimal
translation ¢*. Hence, we can find ¢* by computing a
minimum distance matching for all translations in 7.
If we use the algorithm of Vaidya [9] to compute these
point set matchings we obtain the following result:

Theorem 2 Given two sets A and B of n points in
the plane, a one-to-one matching ¢* and a trans-
lation t* that minimise Dy can be computed in
O(n* - n?log®n) = O(nSlog®n) time.

The main difficulty in improving this result is that
X*() = X(¢f,t), where ¢ denotes an optimal
matching for horizontal translation ¢, is not unimodal.
Therefore X* may have several local minima, which
means we cannot use a binary search to find an op-
timal translation t*. Instead, we have to compute a
matching for all translations in 7.

Minimising L; under scaling. For scaling we can
use the same procedure as for translation: we prove
that there is an optimal scaling that z-aligns and y-
aligns A and B and does not increase the total dis-
tance. We again have a set of at most n* scalings that
is guaranteed to contain an optimal scaling. Hence:

Theorem 3 Given two sets A and B of n points in
the plane, a one-to-one matching ¢*, and a scaling \*

that minimise Dy can be computed in O(n%log®n)
time.

Minimising L; under both translation and scal-
ing. We can use same the approach, but now we z-
align (y-align) two distinct pairs of points. We obtain:

Theorem 4 Given two sets A and B of n points in
the plane, a one-to-one matching ¢*, a translation t*,
and a scaling A* that minimise D can be computed in
O(n'%log® n) time.

3 Preserving directional relations

The second criterion that we consider is preserving
directional relations. Let A and B be two sets of n
points in which no two points have the same x- or
y-coordinate, and let dir(p,q) denote the directional
relation of ¢ with respect to p (see Fig. 3 (a)). The
goal is now to find a matching ¢* : A — B that max-
imises the number of pairs (a1, as) € A x A for which
dir(ay,a2) = dir(¢*(a1),¢*(az)). Stated differently,
we are looking for a matching ¢* that minimises the
number of out-of-order pairs W defined as

W(¢) =|{(a1,a2) | (a1,a2) € Ax AA
dir(ay, az) # dir(¢(ar), ¢(az))}|.

To avoid many nested brackets we will write a’ = ¢(a)
from now on. Furthermore, we observe that transla-
tions and scalings do not influence W.

ay -~ southwest ~"a}
I

a
southeast 2

northwest |northeast

southwest | southeast a
2

(a) (b)

Figure 3: (a) The areas in the plane corresponding to
each direction. (b) The directional relation between
ay and az is not preserved, (a1, az2) is an z-inversion.

A 4-approximation algorithm for minimising
W. We now describe an algorithm to compute
a matching that approximately minimises W. Let
z-rankp(p) denote the x-rank of point p € P: that
is, the number of points in P to the left of p. For
points p € P and ¢ € @ we write p <, ¢ for
z-rankp(p) < z-rankg(¢). The y-rank and <, are
defined analogously.

For a given matching, (ai,a2) € A x A is an z-
inversion if (and only if) a1 <, ag and a} >, ab, or
as <5 a1 and a) >, aj. See Fig. 3 (b). Similarly we
define a y-inversion. An inversion is an z-inversion,
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a y-inversion or both. We denote the number of z-
inversions and the number of y-inversions of match-
ing ¢ by I,(¢) and I,(¢), respectively. It is easy to
see that there is a one-to-one correspondence between
the number of out-of-order pairs W (¢) of matching ¢
and the number of inversions I(¢), i.e. W(¢) = I(¢).
Furthermore, we have max(I(¢), I,(¢)) < I(¢) and
1(¢) < Io(9) + Iy (o).

We define a distance measure w between points a €
Aand b € B:

w(a,b) = |z-ranks(a) — z-rankp (b)| +
|y-ranka(a) — y-rankg(b)|.

We now compute a minimum distance matching ¢
with w as distance measure. The distance measure w
is simply the L;-distance on the ranks of the points,
which means we can use Vaidya’s algorithm [9] to
compute ¢. We again denote the total distance of ¢ by
D(¢), and decompose it into a separate z-component
X (¢) and a y-component Y (¢).

The intuition behind our approach is as follows.
Consider matching a point a, with z-ranks(a,) = 1
to a point b, with z-rankg(b,) = j > i. By the pi-
geonhole principle there are at least j — ¢ points a
with z-ranka(d) > i that are matched to a point b
with x—rankB(l;) < j. Hence, matching a, to b, will
result in at least j — i = |z-rank(a,) — z-rankg(b,)|
z-inversions.

To prove this we order the points a € A by the
rank of ¢(a). For point a, we consider the number of
points that have to “overtake” a, from left to right
when sorting them by rank in A (denoted a above).
If there are m such points, a, moves a distance of
2m + (j — i) in the sorting process. It follows that
I.(¢) = M 4 X ($)/2, where M =3 4 maq.

Additionally, we can show that there are also at
least m points that overtake a, from right to left,
which results in M < X (¢)/2. Hence I.(¢) < X(9).

An easy argument as used in the analysis of bubble-
sort gives us an upper bound of X (¢) < 2I,(¢) for the
number of inversions in terms of X. We conclude:

Lemma 5 I,(¢) < X(¢) < 2I,(¢).

A symmetric argument holds for the y-rank and the
number of y-inversions. This allows us to prove
W(p) = 1(6) < D(#) < 4I(¢) = 4W(9). The fol-
lowing theorem follows:

Theorem 6 Given two sets A and B of n points
in the plane, a one-to-one matching ¢ such that
W(¢) <4 -ming-co W(¢*) can be computed in
O(n?log® n) time.

4 Concluding Remarks

We have seen how to compute a minimum distance
matching with respect to the total Li-distance under
translation, scaling, and both translation and scal-
ing. An implementation of our method shows that for
small values of n we can compute a minimum distance
matching under translation or scaling. However, op-
timising under both is unfeasible in practice.

Furthermore, we can use an algorithm for a mini-
mum L;-distance matching to obtain a matching that
approximately maximises the number of correct direc-
tional relations. An interesting remaining question is
whether it is possible to devise an exact algorithm for
this problem that runs in polynomial time.
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